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ABSTRACT 
 

 
In this thesis, we compare weapon effectiveness methods to determine if 

current effectiveness models provide accurate results.  The United States Military 

currently adheres to a compilation of data and methodologies named the Joint 

Munitions Effectiveness Manuals (JMEM) to determine the effectiveness of air 

delivered weapons against a variety of ground targets.  Since the time these 

manuals were implemented in the 1960s, progress in technology has allowed the 

weapon/target interaction to be more accurately modeled.  This thesis 

investigates the differences of these high fidelity models for unguided weapons 

and the JMEM computations in order to determine whether the older, more 

simplistic, models need to be upgraded.    
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I. INTRODUCTION 
 

The objective of this thesis is to compare different methodologies for 

determining unguided weapon effectiveness against targets in order to determine 

if current methods used by the United States Military provide reasonable 

estimates of damage.  The current methods used by the military in determining 

weapon damage effectiveness have been used for quite some time and may be 

outdated.  Over the last 40 years, weapon/target interaction data from weapon 

tests have been compiled by the military into a volume of data called the Joint 

Munitions Effectiveness Manuals, or JMEM.   The JMEM has used this compiled 

data to formulate estimates of weapon effectiveness for given weapons and 

targets.  In order to simplify weapon effectiveness calculations to meet computing 

speeds of the time, the JMEM needed to implement approximations of weapon 

effectiveness techniques.  For this thesis we will compare these JMEM methods 

with weapon effectiveness modeling methods that do not implement 

approximations and that more closely represent the weapon/target interaction. 

 We will use Monte Carlo simulations as the basis of our comparison 

testing.  The first Monte Carlo simulation will use a damage function called the 

Carleton damage function, which is based on weapon test data, to represent the 

damage inflicted by a weapon of given lethality.  In the Monte Carlo simulations, 

we represent weapons with a lethal area matrix center on the weapon impact 

point.  This lethal area matrix will be populated with damage values obtained 

from either the Carleton damage function, or an approximation of the Carleton 

damage function, depending on the method tested.  We assume this Monte Carlo 

weapon effectiveness model representing the weapon with a lethal area matrix 

populated with the Carleton damage function to be the highest fidelity method in 

determining weapon effectiveness.  This is because some JMEM methods 

generally rely on approximations of the Carleton damage function to calculate 

weapon probabilities of damage. 
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 In order to obtain a broad array of data, we will compare the JMEM and 

Monte Carlo simulation results for single as well as sticks of weapons against 

unitary and area targets.  Along with different weapon/target scenarios, we also 

test the different methods for various delivery accuracies to try to pinpoint the 

reason for discrepancies in the methods’ effectiveness results.  By analyzing the 

differences between weapon effectiveness results, we hope to determine 

whether the current JMEM techniques should be replaced by more complex 

modeling methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 3

II. BACKGROUND 
 

A. DELIVERY ACCURACY 
  

 The probability of damaging or killing a target obviously depends on how 

close a weapon is delivered to the target.  This delivery accuracy is affected by 

many components, especially errors in aiming the weapon and the ballistics of 

the weapon used.   

 

1. Aiming Errors 
  

 The delivery accuracy of a weapon depends heavily on the ability to aim 

that weapon at a desired impact point.  Statistical models are used to determine 

to what degree these aiming errors affect the probability of impacting a desired 

point.  First, two directions are defined in the ground plane.  The range direction 

is the direction of the velocity vector of the aircraft releasing the weapon.  The 

deflection direction is the direction perpendicular to the range.  We next look at a 

sample number of weapons released from the same aircraft at the same release 

conditions, all aimed at the same point on the ground plane.  This will result in a 

map of impact points on the ground plane shown in Figure 2.1.   

 

 

Figure 2.1: Range and deflection directions with impact points. 
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The distribution, or dispersion, of these impact points can be defined statistically.  

In order to do this, we assume that the distribution of the impact points in both 

range and deflection is Gaussian and independent of each other.  

A Gaussian, or normal distribution, is a distribution of data that has 

characteristics that match a probability density function (PDF) given in equation 

(2.1). 

 
2

2

1 ( )( ) exp[ ]
22
xf x µ
σσ π

− −
=    (2.1) 

 

The mean (µ) and the variance (σ2) are calculated from a given data set, or in our 

case, the weapon impact data.  The mean for a normal distribution is the value of 

x that gives the maximum value of f(x).  This is illustrated in Figure 2.2.  

 

 

 

 

 

 

 

 

Figure 2.2: Gaussian distribution probability density function (From Ref. [1]) 

 

The variance gives an indication of the spread of the data set.  A small variance, 

for example, would give a PDF that has a sharp peak, whereas a large variance 

would produce a flatter PDF.  The square root of the variance (σ), or standard 

deviation, of the sample set is also an important quantity.  In a normal distribution, 

approximately 68% of the data will lie in a range +σ.  Similarly, 95.5% of data will 

lie in the range + 2σ, and 99.7% will lie within + 3σ. 

x 

f(x) 
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 The normal distribution assumption can be directly applied to the two 

dimensional impact point data.  For the two dimensional case, we look at the two 

dimensional, bi-variate probability density function shown in equation (2.2). 

 
22

2 2

( )( )1( , ) exp [ ]
2 2 2

yx

x y x y

yxf x y
µµ

πσ σ σ σ
−−

= − +   (2.2) 

 

The subscripts x and y denote the direction of the specified mean and standard 

deviation.  For the weaponeering problem, the range and deflection directions will 

be treated as x and y respectively.  A graphical idea of this concept is presented 

in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Bi-variate Gaussian distribution (From Ref. [1]) 
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error probable (DEP).  The REP and DEP are both related to the standard 

deviation of the distribution in the range and deflection directions. Where the 

standard deviation was defined as the range such that 68% of points will lie 

within +σ, the REP is defined as the distance in the range direction such that 

50% of the total impact points will lie in the range +REP.  The DEP is defined 

similarly, but in the deflection direction.  These terms are better shown in Figure 

2.4. 

 

 

Figure 2.4: Definition of REP and DEP in ground plane. 

 
 

 The difference between REP and DEP and the standard deviations is the 

percentage of impact points that are contained within those ranges.  Using 

tabulated values of the PDF for a normal distribution we find equations (2.3) and 

(2.4). 

 

0.6745 xREP σ=      (2.3) 

   0.6745 yDEP σ=          (2.4) 
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 Another common way of describing the dispersion of impact points 

involves using the circular error probable (CEP).  The CEP is a radius about the 

desired aim point that contains 50% of the impact points, as shown in Figure 2.5.  

 

 

Figure 2.5: Definition of CEP in ground plane. 

 
 

2. Ballistic Dispersion 
 
 The delivery accuracy of a weapon is also dependent on the 

manufacturing of the munitions used to attack a target.  Many details may vary 

from one weapon to another.  An example of these errors may be seen from a 

rifle bolted to the ground firing at a target.  Since the rifle is bolted, we can 

assume that there are no aiming errors.  The rounds fired from the rifle would 

create a pattern of impact points about some point on the target.  These errors 

can be due to anything from variations in bullet shape to different weights of 

explosives used inside each bullet.  [Ref. 1]   

 Usually ballistic dispersion errors are defined as a standard deviation in 

the normal plane of the weapon, measured in mils (milliradians).  The standard 

deviation in the normal plane is denoted as σb.  Figure 2.6 illustrates a typical 

Deflection 
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Aim 
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weapon release against a target.  The normal plane can be seen as the plane 

perpendicular to that of the velocity vector of the weapon at its impact point.   

 

Figure 2.6: Generalized Weapon Trajectory and Impact Diagram 

 

When aiming errors and ballistic dispersion errors are both present in a problem, 

it is often convenient to write the ballistic dispersion in terms of feet in the ground 

plane.  Calculating xbr (ballistic dispersion error in the range direction in feet) and 

xbd (ballistic dispersion error in deflection direction in feet) are found with in 

equations (2.5) and (2.6). 

 

0.6745
1000sin( )

b
br

SRx
I
σ× ×

=         (2.5)  

0.6745
1000

b
bd

SRx σ× ×
=     (2.6) 

 

The slant range (SR) is the straight-line distance from the aircraft at the point of 

release to the impact point of the weapon as shown in Figure 2.6.  The impact 
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angle I is measured in radians, and is the angle between the weapon velocity 

vector at impact and the ground plane. 

 For individually released weapons, we are able to obtain an equivalent 

REP and DEP that combines the ballistic dispersion errors in feet with the aiming 

errors in feet.  To find the equivalent REP and DEP, the ballistic dispersion error 

and aiming errors are root sum squared, and defined as REP’ and DEP’, 

 

2 2' brREP REP x= +      (2.7) 

 

2 2' bdDEP DEP x= +     (2.8) 

  

Ballistic dispersion is treated differently when we deal with multiple 

weapon releases, or sticks of weapons and will be discussed later in this thesis.  

 

 

B. LETHAL AREAS 
 
 There are two major mechanisms in conventional weapons that inflict 

damage upon a target.  These mechanisms are the blast wave produced by the 

high explosive inside of a weapon, and the fragments propelled from the weapon 

after it has exploded. 

 When the high explosive inside a conventional warhead detonates, the 

explosive material will almost instantly be converted into a gas at very high 

temperature and pressure.  These values are typically near 200 atmospheres of 

pressure and 5000 degrees Celsius [Ref. 1].  This high pressure will fragment the 

case around the weapon and compress the air around the weapon.  This 

compression forms a blast wave that travels into the surrounding area.  Blast 

damage is highly effective against most targets that lie near the impact/explosion 

point of the weapon.  Since the blast wave is a wave of pressurized and 

superheated air, it dissipates fairly quickly in the atmosphere, which means its  
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effectiveness greatly decreases with distance from the point of impact.  The blast 

energy is roughly inversely proportional to the cube of the distance from the 

weapon impact. 

Once a blast wave has dissipated in the atmosphere, fragmentation 

becomes the main source of damage.  Primary fragments are the remains of the 

weapon after the high explosive charge has shattered the weapon casing.  These 

fragments are normally fairly small and are propelled up to very high velocities 

from the initial explosion of the weapon.  These velocities propel the fragments 

through, and eventually past the front of the pressure shock wave created by the 

high explosive blast.  Since the fragments are only slowed by air friction, they 

travel further than the blast wave.  This is the advantage of fragmenting weapons.  

Since fragments can damage targets further from the weapon impact than blast 

can, we can accept greater weapon miss distances, and still damage targets.  

Depending on the weapon, a hazardous fragment is one having impact energy of 

58 ft-lb (79 joules) or greater [Ref. 1]. 

The damage resulting from fragmentation and blast is dependent on the 

size and type of weapon, as well as the kill criteria for the target it is used against.  

Undergoing a fairly lengthy analysis described in detail in Reference 1, 

weaponeers are able to create a damage matrix that gives the probability of 

killing (PK) a target a given distance away from the weapon impact.  An example 

of a damage matrix is given in Table 2.1.  Each table cell shows the probability of 

kill given a distance in both range and deflection from the weapon impact point.  

Figure 2.7 shows the angles and distances associated with a weapon detonation 

near a target.  The distance the weapon detonates from the target, which is 

denoted x and y in Figure 2.7, are the range and deflection distances given in 

Table 2.1.  Note Table 2.1 shows only positive deflection distances.  This is done 

because fragments are symmetrical about the range direction. 
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Figure 2.7: Weapon/target interaction geometry. 

 

 

 
Deflection (ft) 

Range▼ 37.9 75.8 113.7 151.6 189.5 227.4 265.3 303.2 341.1 379.0 
-114.4 0 0 0 0 0 0 0 0 0 0 
-100.1 0 0 0 0 0 0 0 0 0 0 
-85.8 0 0 0 0 0 0 0 0 .0001 .0001 
-71.5 .0001 0 0 0 0 0 .0001 .0002 .0001 .0001 
-57.2 .0011 0 0 0 0 .0003 .0004 .0002 .0001 .0001 
-42.9 .0028 0 0 0 .0009 .0008 .0004 .0002 .0001 .0001 
-28.6 .0064 .0001 .0006 .0029 .0017 .0009 .0005 .0002 .0001 .0001 
-14.3 .1402 .0059 .0099 .0042 .0019 .0009 .0005 .0002 .0001 .0001 

0 .5571 .0459 .0127 .0045 .0019 .0009 .0005 .0002 .0001 .0001 
14.3 .6794 .0891 .0156 .0045 .0019 .0009 .0005 .0002 .0001 .0001 
28.6 .1741 .0927 .0325 .0116 .0041 .0012 .0005 .0002 .0001 .0001 
42.9 .0060 .0186 .0258 .0128 .0063 .0034 .0016 .0006 .0002 .0001 
57.2 .0007 .0050 .0105 .0118 .0061 .0032 .0017 .0010 .0006 .0003 
71.5 0 .0024 .0015 .0072 .0056 .0031 .0017 .0010 .0006 .0004 
85.8 0 .0010 .0012 .0011 .0045 .0028 .0017 .0009 .0005 .0003 
100.1 0 .0003 .0009 .0005 .0012 .0025 .0015 .0009 .0005 .0003 
114.4 0 0 .0006 .0004 .0002 .0011 .0014 .0009 .0005 .0003 
128.7 0 0 .0003 .0003 .0002 .0001 .0009 .0007 .0004 .0003 
143.0 0 0 .0001 .0003 .0001 .0001 .0001 .0006 .0004 .0003 
157.3 0 0 0 .0002 .0001 .0001 0 .0002 .0004 .0002 
171.6 0 0 0 .0001 .0001 .0001 0 0 .0002 .0002 
185.9 0 0 0 .0001 .0001 .0001 0 0 0 .0001 
200.2 0 0 0 0 .0001 0 0 0 0 0 
214.5 0 0 0 0 .0001 0 0 0 0 0 
228.8 0 0 0 0 0 0 0 0 0 0 
243.1 0 0 0 0 0 0 0 0 0 0 

 

Table 2.1:  Sample damage matrix. (From Ref. [1]) 

Weapon 
detonation 

point Target location 
(center of 

vulnerability) 

Range 

Deflection 

x 

y SR 

Ground  
zero 

Deflection 
angle α 

Elevation 
angle θ 

W 

O T 

R 
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This high fidelity modeling of the weapon target interaction is too difficult to use in 

more simplistic weaponeering modeling, so approximations are made.   The first 

of these approximations is to find constant values of PK in the damage matrix, 

and draw lines of contour through them.  This results in a plot similar to Figure 

2.8.  The contours in the range and deflection directions have near Gaussian 

distributions, which is also shown in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Gaussian approximations of PK contour lines. (From Ref. [1]) 
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The Gaussian approximation allows us to develop an expression that gives the 

PK for a point (x,y), given a certain weapon.  This is called the Carleton damage 

function which is given in equation (2.9). 

 
2 2

2 2( , ) expK
r d

x yP x y
WR WR
 

= − + 
 

    (2.9) 

 

The Carleton damage function is plotted in Figure 2.9.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Plot of Carleton damage function. 

 

 

The WRr and WRd, or weapon radii in the range and deflection direction are 

characteristics of the weapon used and help give information on the overall 

lethality of the weapon.  This lethality is best described in a term called the lethal 

area, or AL.  AL is the area under the PK curve for all area in the ground plane.      
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For fragmentation weapons, we call AL the mean area of effectiveness due to 

fragments, or MAEF.  For fragmentation weapons modeled with the Carleton 

damage function, the MAEF is equal to the area under the Carleton damage 

function and given in equation (2.10). 

 

F r dMAE WR WRπ= × ×     (2.10) 

  

Even with the numerous assumptions made up to this point, the Carleton 

damage function is still too difficult to use in simple modeling.  We can 

approximate the lethal area of the Carleton damage function as the area of an 

ellipse with dimensions WRr and WRd as shown in Figure 2.10. 

 

 

 

 

 

 

 

 

Figure 2.10: Elliptical approximation of Carleton damage function (From  
   Ref. [1]) 
 

The PK inside of this ellipse is equal to unity, and zero outside of the ellipse.  This 

is done to conserve the lethality during the approximation.  Since the PK is unity 

inside the ellipse, and zero outside, we refer to this as an elliptical “cookie cutter”.  

The cookie cutter nickname pertains to the fact that a target that lies outside of 

the ellipse’s boundary will not be damaged, so the ellipse effectively cuts out an 

area of certain kill. It is also useful to define the ratio of the weapon radii WRr and 

WRd .  This ratio (a) is dependent upon the impact angle of the weapon, and 

through the use of empirical data has been defined in equation (2.11). 
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[ ]1 0.8cos( ),0.3
d

rWRa MAX I
WR

= = −     (2.11) 

  

Knowing this ratio of the weapon radii allows us to rewrite the Carleton damage 

function in a different form.   We first define an effective target length (L’ET) and 

width (W’ET) rather than the weapon radii.  Equations (2.12) and (2.13) define 

these effective lengths 

 

' 2 1.128ET r F
aL WR MAE
π

= × = ×     (2.12) 

'' 2 ET
ET d

LW WR
a

= × =      (2.13) 

 

We can then express the Carleton damage function in terms of L’ET and W’ET, as 

shown in equation (2.14). 

 
2 2

2 2

4 4( , ) exp
' 'K
ET ET

x yP x y
L W
 

= − + 
 

    (2.14) 

 

The final step of the procedure is approximating the ellipse shown in 

Figure 2.10 into a rectangular cookie cutter.   Since lethality must be conserved 

through this approximation, we must calculate rectangular dimensions that 

enclose the same amount of lethal area as the original ellipse.  This 

approximation is shown graphically in Figure 2.11. 
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Figure 2.11: Definition of rectangular cookie cutter dimensions 
  (After Ref. [1]) 

 

We define the rectangle’s dimensions as the effective target length and width, or 

LET and WET respectively.  These are calculated from our knowledge of the 

weapon radii ratio as shown in equations (2.15) and (2.16). 

 

ET FL MAE a= ×      (2.15) 

/ET ETW L a=       (2.16) 

 

 
 
C. EFFECTIVENESS 
 
 Suppose we are dealing with a single aircraft releasing a single bomb 

against a target on the ground.  In a problem like this, we would be interested in 

calculating the single sortie probability of damage, or SSPD.  The SSPD is the 

probability that the single released weapon will cause damage to the target, 

equal to the amount represented by the damage function.  A sortie is single pass 

by a single aircraft releasing weapons upon a target.  For our case, we will deal 

with a single released weapon.   

Range 

Deflection 
     WRd 

 WRr 
LET 
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 We will first only consider the range direction in our analysis.  The 

accuracy distribution relative to the target is assumed to be a Gaussian normal 

distribution, and is called g(x).  Also, the damage function of the weapon is 

modeled with the Carleton damage function, or c(x).  To find the SSPD in the 

range direction, the distance the weapon lands from the target needs to be 

known.  In this example we will call this distance u.  Figure 2.12 shows a 

graphical representation of these assumptions. 

 

 

Figure 2.12: SSPD for a single target against a unitary target.  
(From Ref. [1]) 

 

The point SSPD1 marks the probability of damaging the target with a single sortie.  

This is the value of the damage function c(x) at the target.  From our knowledge 

of delivery accuracy models, we may assume that the value u has a normal 

distribution for a large number of independent trial sorties.  If we average the 

SSPD value over this large number of trials it will tend toward an expected value.  

Using knowledge of statistics and incorporating the damage function and 

accuracy distribution, we end up with equation (2.17). 

 

( ) ( )xSSPD c x g x dx
∞

−∞

= ∫     (2.17) 

 

Damage function c(x) 

target Range x x=u 

Accuracy function g(x) 

SSPD1 
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We can then substitute in the one-dimensional forms of the Carleton damage 

function and the accuracy function.  These expressions are given in equations 

(2.18) and (2.19). 

 
2

2

1( ) exp
22 xx

xg x
σσ π

 
= − 

 
     (2.18) 

 
2

2

4( ) exp
'ET

xc x
L

 
= − 

 
     (2.19) 

 

Substituting these equations into equation (2.17) and solving yields an 

expression for SSPDx, which is given in equation (2.20). 

 

2 2

'
8 '

ET
x

x ET

LSSPD
Lσ

=
+

    (2.20) 

 

We have been only dealing in one dimension so far, but the results in the 

deflection direction are similar as shown in equation (2.21). 

 

2 2

'
8 '

ET
y

y ET

WSSPD
Wσ

=
+

    (2.21) 

 

Lastly, we find the total SSPD by combing the SSPD in range and in deflection. 

 

x ySSPD SSPD SSPD= ×     (2.22) 

 

 Calculating the single sortie probability of damage is useful for determining 

the damage inflicted by a given weapon against a single target.  However, this  
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method in determining the effectiveness of a weapon is not used for all weapon/ 

target interactions.  These different effectiveness methods will be discussed later 

in this thesis. 
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III. SINGLE WEAPON VERSUS UNITARY TARGET 
 

A. JMEM METHOD 
 
 The Joint Munitions Effectiveness Manual (JMEM) uses a methodology 

similar to the case discussed in the Effectiveness section of Chapter II.  Option 4 

of the MATLAB m-file code provided in Appendix A reproduces the JMEM 

methodology for the case of single weapon released against unitary targets.  The 

JMEM method uses the Carleton damage function to calculate the probability of 

damage to a target.  This method first root sum squares the aiming errors and 

ballistic dispersion errors, to find a REP’ and DEP’ in feet, in the ground plane as 

shown in equations (3.1) and (3.2). 

 

2 2' brREP REP x= +      (3.1) 

2 2' bdDEP DEP x= +     (3.2) 

 

 From the user inputted values of the weapon MAEF and the weapon 

impact angle, we can calculate the weapon radii WRr and WRd with equations 

(3.3) and (3.4).  

r F
aWR MAE
π

= ×      (3.3) 

r
d
WRWR
a

=       (3.4) 

 

Where a is the aspect ratio of the weapon radii calculated from the weapon 

impact angle I, and shown in equation (3.5). 

 

[ ]1 0.8cos( ),0.3
d

rWRa MAX I
WR

= = −    (3.5)  
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The JMEM method for a single weapon against a unitary target calculates the 

effective target length L’ET and effective target width W’ET of the weapon lethal 

area based on the weapon radii.  This is shown in equations (3.6) and (3.7). 

 

' 2 1.128ET r F
aL WR MAE
π

= × = ×    (3.6) 

'' 2 ET
ET d

LW WR
a

= × =     (3.7) 

  

In order to calculate the single sortie probability of damage (SSPD), we 

use equation (3.8).  This gives the probability of damage for a single weapon with 

user inputted lethality and accuracy against a unitary target. 

 

2 2 2 2

' '
(17.6( ') ' )(17.6( ') ' )

ET ET

ET ET

L WSSPD
REP L DEP W

×
=

+ +
  (3.8) 

 

 

 

B. MONTE CARLO SIMULATIONS 
 
 A Monte Carlo simulation is a way of finding the probability of damaging a 

target by analyzing the results of a large number of sample weapon versus target 

trials.  For example, to find the probability of damaging a target using a Monte 

Carlo approach, we look at a large number of independent trials of a weapon 

aimed at a desired impact point.  The difference between iterations is a small 

random variation in the delivery accuracy of the weapon.  This is shown in Figure 

3.1.   
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Figure 3.1: Two sample iterations of a Monte Carlo simulation. 

 

Figure 3.1 shows two sample iterations of a Monte Carlo simulation.  By slightly 

changing the aiming error and ballistic dispersion error of a weapon, the impact 

point of the weapon will change.   

The variations in delivery accuracies are obtained by first calculating the 

standard deviations of the aiming error and ballistic dispersion in the ground 

plane.  Given the user inputted REP and DEP, we obtain the standard deviation  
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of the aiming error in the ground plane for both the range and deflection 

directions (σaim_range and σaim_deflection respectively) through equations (3.9) and 

(3.10) 

aim_range
REP=

0.6745 
σ      (3.9) 

aim_deflection
DEP=

0.6745 
σ      (3.10) 

 

Given the user inputted slant range (SR), impact angle (I), and ballistic dispersion 

measured in mils in the normal plane (σb), we calculate the standard deviation of 

the ballistic dispersion in the ground plane for both the range and deflection 

directions (xbr and xbd) through equations (3.11) and (3.12). 

 

0.6745
1000sin( )

b
br

SRx
I
σ× ×

=
    (3.11) 

0.6745
1000

b
bd

SRx σ× ×
=     (3.12) 

 

All four of the delivery accuracy standard deviations (σaim_range, σaim_deflection, xbr, 

and xbd) are then multiplied by a random number, and the standard deviations 

are added together in the range and deflection directions.  This results in the 

range and deflection location of the impact point, and is shown in equations (3.13) 

and (3.14). 

 

RANGE aim_rangeImpact Point ( #) ( #)brrandom x randomσ= × + ×   (3.13) 

DEFLECTION aim_deflectionImpact Point ( #) ( #)bdrandom x randomσ= × + ×   (3.14) 

 

The random# term in the previous equations is a random number from a normal 

distribution.  This normal distribution has a mean value of zero and a standard 

deviation of one.  Using this normal distribution allows us to assume that the 
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average probability of damage for a large number of weapon trials will equal the 

expected value of the damage function at the desired aim point. 

This thesis will use two approaches in modeling the weapon lethal area in 

a Monte Carlo simulation.  In each simulation, the ground plane and the lethal 

area are divided into 1ft by 1ft cells.  The first weapon model will use a weapon 

lethal area matrix with each matrix cell populated with a probability of damage 

obtained by the Carleton damage function.  An example of a lethal area matrix 

populated by the Carleton damage function is given in Figure 3.2. 

 
0.0000    0.0003    0.0013    0.0036    0.0059    0.0059    0.0036    0.0013    0.0003    0.0000 

0.0003    0.0022    0.0098    0.0266    0.0439    0.0439    0.0266    0.0098    0.0022    0.0003 

0.0013    0.0098    0.0439    0.1194    0.1969    0.1969    0.1194    0.0439    0.0098    0.0013 

0.0036    0.0266    0.1194    0.3247    0.5353    0.5353    0.3247    0.1194    0.0266    0.0036 

0.0059    0.0439    0.1969    0.5353    0.8825    0.8825    0.5353    0.1969    0.0439    0.0059 

0.0059    0.0439    0.1969    0.5353    0.8825    0.8825    0.5353    0.1969    0.0439    0.0059 

0.0036    0.0266    0.1194    0.3247    0.5353    0.5353    0.3247    0.1194    0.0266    0.0036 

0.0013    0.0098    0.0439    0.1194    0.1969    0.1969    0.1194    0.0439    0.0098    0.0013 

0.0003    0.0022    0.0098    0.0266    0.0439    0.0439    0.0266    0.0098    0.0022    0.0003 

0.0000    0.0003    0.0013    0.0036    0.0059    0.0059    0.0036    0.0013    0.0003    0.0000 

 

Figure 3.2: Example of lethal area matrix populated by Carleton damage 

   function. 

 

The dimensions of this lethal area matrix are dictated by the weapon radii.  For 

the Monte Carlo simulations in this thesis, the size of the lethal area matrix was 

set to 4WRr by 4WRd because outside of these dimensions, the probability of 

damage from the Carleton damage function is negligible.   

 The second Monte Carlo simulation will use the rectangular cookie cutter 

approximation of the Carleton damage function.  This will also use a lethal area 

matrix, but the lethal area matrix cells will all be populated by a probability of 

damage equal to one.  The dimensions of this lethal area are LET and WET as 

explained in Chapter II Section B Lethal Areas.  These dimensions are calculated 

from the user inputs of MAEF and weapon impact angle (which determines the 

aspect ratio a as in equation (3.5)) as shown in equations (3.15) and (3.16). 
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ET FL MAE a= ×      (3.15) 

/ET ETW L a=       (3.16) 

 

Again, the probability of damage inside of the lethal area matrix defined by LET 

and WET is equal to one, and the probability of damage outside of these 

dimensions is zero. 

 The details of how each Monte Carlo simulation determines a probability 

of damage will be explained in the following two sections. 

 

1. Modeling Weapons with Carleton Damage Function 
 
 The first Monte Carlo simulation models a single weapon with a lethal area 

matrix with 1ft by 1ft cells populated with a probability of damage from the 

Carleton damage function.  The first step in this simulation is to create the 

weapon lethal area matrix from user inputs.  The result of which gives a lethal 

area matrix similar to the one shown in Figure 3.2.  This weapon matrix is held at 

a constant throughout the Monte Carlo simulation.  The location of the target in 

which we are aiming is what varies in each iteration of the simulation.  The 

process of varying the target location was explained above with equations (3.9) 

through (3.14).   

 Examples of iterations of the Monte Carlo simulation are shown in Figure 

3.3.  Here we have a lethal area matrix populated by the Carleton damage 

function fixed in the ground plane.  For this example the location of the target, 

which is based on the delivery accuracy of the weapon, is 3 feet past the 

aimpoint in the range direction, and 2 feet past in the deflection direction.  The 

corresponding cell of this target location is shaded in dark grey.  This 0.1194 

value is the probability of damaging the target for this iteration.  The next iteration 

finds the target location to be 4 feet short of the aim point in the range direction, 

and 3 feet short in the deflection direction.   This target location is shaded in light 

grey and has a probability of damage equal to 0.0098. 
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0.0000    0.0003    0.0013    0.0036    0.0059    0.0059    0.0036    0.0013    0.0003    0.0000 

0.0003    0.0022    0.0098    0.0266    0.0439    0.0439    0.0266    0.0098    0.0022    0.0003 

0.0013    0.0098    0.0439    0.1194    0.1969    0.1969    0.1194    0.0439    0.0098    0.0013 

0.0036    0.0266    0.1194    0.3247    0.5353    0.5353    0.3247    0.1194    0.0266    0.0036 

0.0059    0.0439    0.1969    0.5353    0.8825    0.8825    0.5353    0.1969    0.0439    0.0059 

0.0059    0.0439    0.1969    0.5353    0.8825    0.8825    0.5353    0.1969    0.0439    0.0059 

0.0036    0.0266    0.1194    0.3247    0.5353    0.5353    0.3247    0.1194    0.0266    0.0036 

0.0013    0.0098    0.0439    0.1194    0.1969    0.1969    0.1194    0.0439    0.0098    0.0013 

0.0003    0.0022    0.0098    0.0266    0.0439    0.0439    0.0266    0.0098    0.0022    0.0003 

0.0000    0.0003    0.0013    0.0036    0.0059    0.0059    0.0036    0.0013    0.0003    0.0000 

 

Figure 3.3: Example iteration of Monte Carlo simulation using Carleton 

damage function to fill lethal area matrix. 

 

For the full Monte Carlo simulation, we would repeat this for n iterations, each 

individual iteration (i) resulting in its own probability of damage Pd/i.  The value n 

is the total number of iterations used in the Monte Carlo simulation.  The final 

probability of damage for the Monte Carlo simulation is the average of all of the 

Pd/I shown in equation (3.17). 

/
1

n

d i
i

d

P
P

n
==
∑

     (3.17) 

 

 The number of iterations (n) used in the Monte Carlo simulation used to 

compare the Monte Carlo and JMEM methods was set to ten million.  In running 

the Monte Carlo simulation multiple times, we ensure that the resulting Pd from 

each simulation did not change.  This shows that the simulation was converging 

to a single value, which we would expect.  After testing different values of n, it 

was found that ten million provides for this convergence.   

 A Monte Carlo simulation with a weapon modeled with a lethal area matrix 

fill by the Carleton damage function is presented in Appendix A, Option 1.   
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2. Modeling Weapons with Rectangular Cookie Cutter   
  Approximation 
 

 The second Monte Carlo simulation models a single weapon as a lethal 

area matrix rectangular cookie cutter.  The dimensions of this lethal area matrix  

are determined from user inputs as described earlier in this chapter in equations 

(3.5), (3.15), and (3.16).  As in the previous Monte Carlo simulation, we place this 

lethal area matrix on the ground plane, and for each iteration of the simulation, 

the location of the target changes due to variations in the delivery accuracy of the 

weapon.  

 Examples of iterations of the Monte Carlo simulation are shown in Figure 

3.4.  Here we have a lethal area matrix with dimensions LET and WET fixed in the 

ground plane.  Since this is a rectangular cookie cutter approximation method, 

we have probability of damage equal to one inside of the lethal area matrix, and 

zero outside of the lethal area matrix.   In this example we assume that the user 

inputted values of the weapon effectiveness result in LET = 6ft and  WET = 6ft.  

This 6ft by 6ft rectangular cookie cutter is shown In Figure 3.4.   For this example, 

the location of the target, which is based on the delivery accuracy of the weapon, 

is 3 feet past the aim point in the range direction, and 2 feet past in the deflection 

direction.  The corresponding cell of this target location is shaded in dark grey.  

Since this target location is inside the weapon lethal area, its probability of 

damage is 1.0.  Say the next iteration finds the target location to be 4 feet short 

of the aim point in the range direction, and 3 feet short in the deflection direction.   

This target location is shaded in light grey and has a probability of damage equal 

to 0.0. 
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Figure 3.4: Example iteration of Monte Carlo simulation using a 

rectangular cookie cutter lethal area matrix. 

 

For a full Monte Carlo simulation, the total Pd is found as it was before with 

equation (3.17).  For this simulation however, we will only sum ones and zeros 

because those are the only values Pd/I can have.  Again, the Monte Carlo 

simulation using a rectangular cookie cutter lethal area uses ten million iterations 

to achieve a convergence of results.   

 

C. RESULTS OF UNITARY TARGET COMPARISONS 
  
 The comparisons done this section are to find the differences between 

weapon effectiveness methodologies for the case of a single weapon against 

unitary targets.  In order to get a wide array of results each comparison was done 

for different user inputted values of MAEF, REP & DEP and ballistic dispersion in 

mils, in the normal plane.  The weapon impact angle and release slant range 

were kept at a constant 45° and 10,000 ft respectively for each comparison. 
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1. JMEM versus Carleton Damage Function 
  

 The first comparison to the JMEM methodology of calculating the 

effectiveness of a single weapon against a unitary target is to compare it to a 

Monte Carlo simulation using the Carleton damage function.  This is a particularly 

useful comparison because the current JMEM method is based on the Carleton 

damage function.  Since this is the case, we would expect the Monte Carlo 

simulation representing the weapon as the Carleton damage function to produce 

similar results to the JMEM.  Tables 3.1 and 3.2 present the results for the PK 

found for both the JMEM method and Monte Carlo simulation.  The shaded 

values in the Tables are obtained from the JMEM method, while the unshaded 

values are those of the Monte Carlo simulation. 

 

 

MAEF=5000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.2236 0.1787 0.1363 
 0.2239 0.1477 0.0978 
     
REP=25ft & DEP=25ft 0.3384 0.2621 0.1905 
 0.3386 0.2091 0.1284 
     
REP=50ft & DEP=25ft 0.1834 0.1616 0.1335 
 0.1837 0.1419 0.101 
     
REP=50ft & DEP=50ft 0.1211 0.1103 0.0956 
 0.1215 0.1002 0.077 

 
Table 3.1: Results of JMEM and Monte Carlo for MAEF=5000ft2 
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MAEF=1000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.0542 0.042 0.031 
 0.0546 0.0339 0.0217 
     
REP=25ft & DEP=25ft 0.0999 0.0719 0.0483 
 0.1003 0.0543 0.0304 
     
REP=50ft & DEP=25ft 0.0509 0.0427 0.0333 
 0.0511 0.036 0.0237 
     
REP=50ft & DEP=50ft 0.0276 0.0249 0.0213 
 0.0278 0.0225 0.0169 

 
Table 3.2: Results of JMEM and Monte Carlo for MAEF=1000ft2 

 

 It can be seen from Tables 3.1 and 3.2 that the Monte Carlo simulation 

does not produce the same results as the JMEM.  This is especially true for the 

case of a large ballistic dispersion.  The lethal area as described by the MAEF 

does not seem to alter the error between the JMEM and Monte Carlo result, 

which is expected since both methodologies use the MAEF to find the weapon 

radii used to describe the lethality of the weapon.  This leaves the delivery 

accuracy as the prime reason for the differences in results.  These differences 

are especially seen for the case of large ballistic dispersion.  As the ballistic 

dispersion is lowered down to zero, we see a decrease in the error between the 

two methods.  In the cases of no ballistic dispersion for any of the four aiming 

error combinations, we obtain results that are within a tenth of a percent of each 

other for the two methods.  This leads us to believe that the handling of the 

ballistic dispersion is the main reason for differences in the results.  There are 

two viable explanations for this.  One possibility is that the Monte Carlo 

simulation does not correctly represent the ballistic dispersion by varying it by a 

random number in each iteration of the code.  Another reason may be from the 

fact that the JMEM method root sums squares the aiming error with the ballistic 

dispersion (measured in feet in the ground plane).  It may be that these ballistic 

errors cannot be combined with the aiming error probables as originally thought. 
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It is also interesting to note that the Monte Carlo result is constantly 

greater that the JMEM result for non-zero ballistic dispersion cases, which shows 

that the JMEM is a more conservative estimate of damage.    

  

2. JMEM versus Rectangular Cookie Cutter Approximation 
 

 The last comparison for single weapons against unitary targets is between 

the JMEM method and a Monte Carlo simulation which represents the weapon 

as a rectangular cookie cutter.  Though interesting, the results of this comparison 

have very little practical meaning.  JMEM weaponeering methodologies make 

use of the rectangular cookie cutter approximation in cases where the Carleton 

damage function itself to too complicated to utilize.  The case we are looking at 

now of a single weapon versus and unitary target does not need to use an 

approximation, and the JMEM method uses the Carleton damage function as 

was explained in Chapter III Section A.  Modeling the weapon as a rectangular 

cookie cutter area would only lessen the fidelity of the JMEM method for this 

weapon/target case.  The results of comparing the Monte Carlo simulation and 

the JMEM method are given in Tables 3.3 and 3.4.  The shaded values in the 

Tables are obtained from the JMEM method, while the unshaded values are 

those of the Monte Carlo simulation. 

MAEF=5000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.2443 0.1921 0.1438 
 0.2239 0.1477 0.0978 
     
REP=25ft & DEP=25ft 0.3937 0.2975 0.2108 
 0.3386 0.2091 0.1284 
     
REP=50ft & DEP=25ft 0.2062 0.1801 0.146 
 0.1837 0.1419 0.101 
     
REP=50ft & DEP=50ft 0.1218 0.1161 0.0997 
 0.1215 0.1002 0.077 

 

Table 3.3: Results of JMEM and Monte Carlo for MAEF=5000ft2 
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MAEF=1000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.0528 0.0408 0.0298 
 0.0546 0.0339 0.0217 
     
REP=25ft & DEP=25ft 0.1007 0.0713 0.0475 
 0.1003 0.0543 0.0304 
     
REP=50ft & DEP=25ft 0.0509 0.0422 0.0326 
 0.0511 0.036 0.0237 
     
REP=50ft & DEP=50ft 0.0266 0.024 0.0206 
 0.0278 0.0225 0.0169 

 
Table 3.4: Results of JMEM and Monte Carlo for MAEF=1000ft2 

 

 As expected, the results from the Monte Carlo simulation and the JMEM 

method do not match.  This is due mainly to the reasons discussed before 

concerning the fact that the rectangular cookie cutter method makes 

approximations in the Carleton damage function that the JMEM method does not 

make.  Along with this reason we suspect that the ballistic dispersion accounts 

for some of the error between the methods, as it did for the Monte Carlo 

simulation with the Carleton damage function.  Also similar to the previous 

comparison is that the Monte Carlo simulation consistently gives greater damage 

results than the JMEM method, leading to the conclusion that the JMEM is more 

conservative than the Monte Carlo for all delivery accuracy inputs.   

 A better way of comparing the rectangular cookie cutter Monte Carlo 

simulation and JMEM method is to look at the JMEM for single weapons versus 

area targets.  The concept of single weapons versus area target will be 

discussed in detail Chapter IV.  When the JMEM calculates a probability of 

damage for a single weapon against a unitary target, the target dimensions 

inputted into OEM 5.0 (Reference 2) are a 0 ft by 0 ft target.  When these 

dimensions are inputted, the OEM program uses the Carleton damage function 

as described earlier in this chapter for a single weapon against a unitary target.  
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When anything other than 0 ft by 0 ft target is inputted, the OEM program uses 

the JMEM method for single weapons against area targets.  This methodology 

for area targets uses an approximation of the Carleton damage function to find 

the probability of damage.  For the comparison given below in Tables 3.5 and 3.6, 

a target dimension of .01 ft by .01 ft was inputted into OEM 5.0 to represent a 

unitary target with a small area target.  Now we are able to compare results of 

more similar methods, rather than comparing a rectangular cookie cutter Monte 

Carlo simulation with the Carleton damage function.  

 

MAEF=5000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.2443 0.1921 0.1438 
 0.2503 0.1601 0.104 
     
REP=25ft & DEP=25ft 0.3937 0.2975 0.2108 
 0.402 0.2379 0.1407 
     
REP=50ft & DEP=25ft 0.2062 0.1801 0.146 
 0.2109 0.1595 0.1103 
     
REP=50ft & DEP=50ft 0.1218 0.1161 0.0997 
 0.1313 0.1073 0.0815 

 
Table 3.5: Results of JMEM (small area) and Monte Carlo for MAEF=5000ft2 

 

MAEF=1000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.0528 0.0408 0.0298 
 0.0546 0..0347 0.022 
     
REP=25ft & DEP=25ft 0.1007 0.0713 0.0475 
 0.1071 0.0567 0.0313 
     
REP=50ft & DEP=25ft 0.0509 0.0422 0.0326 
 0.0541 0.0375 0.0244 
     
REP=50ft & DEP=50ft 0.0266 0.024 0.0206 
 0.0285 0.023 0.0172 

 
Table 3.6: Results of JMEM (small area) and Monte Carlo for MAEF=1000ft2 
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We can see from Tables 3.3, 3.4, 3.5 and 3.6 that the results for the Monte Carlo 

simulation match somewhat better with the JMEM method for a small area target 

than they do with the unitary target JMEM model.  This was expected due to the 

similarities between the rectangular cookie cutter method and the JMEM method 

for area targets in approximating the Carleton damage function.  Differences in 

the results are from the sources previously discussed in this section, as well the 

fact that we are dealing with different target areas.  The Monte Carlo uses a 1ft 

by 1 ft cell to represent the unitary target, while we have to use a .01 ft by .01 ft 

area to calculate the JMEM method probability of damage. 
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IV. SINGLE WEAPON VERSUS AREA TARGET 
 
 The area target is best described as an area of targets, or a certain 

grouping of target elements. An area target could contain anything from ground 

troops to tanks to components of a surface to air missile site.  The key to 

analyzing area targets is that we must assume that the target elements are 

uniformly distributed within the prescribed area.   
When determining the amount of damage done to an area target, we do 

not calculate the single sortie probability of damage as done with unitary targets.  

For area targets we measure a quantity called the expected fractional damage, 

or EFD.  Since we are dealing with an area of target elements, we are concerned 

with what fraction of these target elements are damaged for a given weapon 

impact.  This is shown in Figure 4.1 below.  Figure 4.1 shows an area target 

consisting of twelve target elements (denoted by stars), which are uniformly 

distributed inside the target area dimensions. 

 

Figure 4.1:  Area target partially covered by weapon lethal area.  (After Ref. [1]) 

 

In this case, 50% of the target elements are covered by the weapon lethal area 

rectangle.  If we assume the probability of damage inside of the weapon lethal 

area, or PCD, is 1.0, we know the fractional damage done in Figure 4.1.  This will 

Area Target 

Weapon Lethal Area 
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remain true for any case in which the weapon lands at a point such that half of 

the area target elements are covered by the weapon lethal area.  The EFD is 

calculated from the expected fractional coverage of the weapon lethal area on 

the area target for a large number of trials, shown in equation (4.1) 

 

( )C CDEFD E F P= ×      (4.1) 

 

 The same comparisons done for unitary target situations earlier will be 

done for area targets.  The methods analyzed are Monte Carlo simulations with 

two ways of modeling weapon effectiveness, and the JMEM method of 

calculating EFD. 

 

A. JMEM METHOD 
  

 The first step in the JMEM method for area targets is dealing with the 

delivery accuracy of the weapon.  The delivery accuracy is handled in the same 

fashion as it is for unitary targets by root sum squaring the aiming errors and 

ballistic dispersion to find REP’ and DEP’.   

 We will first look at only at the problem in the range direction.  The area 

target is assigned length and width dimensions of LA and WA respectively.  A 

sample weapon/target interaction is presented in Figure 4.2.  The figure shows a 

target length of LA with a weapon impacting the ground a distance u from the 

center of the area target.  The weapon is represented by the rectangular 

equivalent of the Carleton damage function, where the probability of damage 

inside of the rectangular area is equal to unity.  As before when calculating SSPD, 

the accuracy function of the weapon is represented by g(x), and the rectangular 

damage function has length of LET in our one dimensional case.  
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Figure 4.2: Rectangular lethal area against an area target.  (From Ref. [1]) 

 

 The example shown in Figure 4.2 would yield no damage to the area 

target because the weapon lethal area does not overlap the area target.  The 

next weapon drop however, may have an impact point that causes the lethal area 

to partially cover the area target, which we have defined as fractional coverage.  

In order to determine the damage caused by a weapon, we will need to know the 

details of the fractional coverage. 

 With a weapon dropped against an area target, there are an infinite 

number of ways in which the weapon lethal area can either partially overlap, 

totally cover, or not overlap the area target.  This creates a problem when dealing 

with weapon lethal areas that have different area target dimensions.  Through a 

detailed explanation provided in Reference 1, we are able to simplify the problem 

of weapon overlap scenarios.  This is done first by defining a parameter called 

the effective pattern length and width.  These are found in equations (4.2) and 

(4.3). 

 

max( , )EP ET AL L L=      (4.2) 

max( , )EP ET AW W W=      (4.3) 

 

Damage

LA/2 -LA/2 

target Range x x=u 

Accuracy function g(x) 

1.0 

LET 
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 The next finding is that there is a way to summarize the fractional 

coverage of a weapon lethal area onto an area target as a function of x, or the 

distance from the weapon impact point to the center of the area target.  This 

summary is shown graphically in Figure 4.3. 
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Figure 4.3:  Fractional coverage in the range direction.  (From Ref. [1]) 

 

The values s and t are shorthand notations given in equations (4.4) and (4.5). 

2
EP AL Ls +

=       (4.4) 

2
EP AL Lt −

=       (4.5) 

 We are then able to find the expected value of the fractional coverage 

since we know the fractional coverage given a value of x (from Figure 4.3) and 

that the value x itself is a product of the normally distributed aiming error g(x).  

We can then define the expected fractional coverage E(FR) in equation (4.6) 

 

( ) ( ) ( )R RE F F x g x dx
∞

−∞

= ∫     (4.6) 

 

Equation (4.6) can be rewritten b\y substituting in the value of FR from Figure 4.3 

and using the probability density function of the aiming error g(x) for a normal 

distribution with zero mean (given by equation (4.7)) 

x

FR 

 

s t -t -s 

1RF =  
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21( ) exp

22 xx

xg x
σσ π

 −
=  

 
    (4.7) 

We can then expand equation (4.6) to equation (4.8) 
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∫

∫ ∫

∫

   (4.8) 

 

This may also be written as equation (4.9) 
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∫

     (4.9) 

 

Equation (4.9) is easier solved in parts, so a shorthand notation is used to split it 

into five smaller integrals.  This shorthand is shown in equation (4.10).  

 

1 2 3 4 5( ) { }RE F I I I I I= + + + −    (4.10) 

 

The first three integrals in equation (4.10) involve the normal cumulative 

distribution given in equation (4.7).  In order to compute the normal cumulative 

distribution function (CDF) we use the MATLAB function normcdf.m.  This 

function takes the user inputs of x, µ (mean of the miss distance), and σ 
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(standard deviation of the miss distance) and gives the value of the CDF.  In our 

case, each integral has the same zero mean and the same standard deviation 

calculated from the delivery accuracy of the weapon.  Using this function as well 

as our previously defined shorthand notation, we solve the first three integrals in 

equations (4.11), (4.12), and (4.13). 

 

1 [ ( ) ( )]I normcdf t normcdf t= − −     (4.11) 

2 [ ( ) ( )]
2
EP A

A

L LI normcdf t normcdf s
L
+

= − − −     (4.12) 

3 [ ( ) ( )]
2
EP A

A

L LI normcdf s normcdf t
L
+

= −    (4.13) 

 

By rearranging elements of the fourth and fifth integrals, we can solve the 

difference between the integrals analytically as done in Reference 1.  The result 

of this is given in equation (4.14). 

 
2 2

2 2
4 5

2 [ ]
2

x x

s t

x

A

I I e e
L

σ σσ
π

   
− −      
   − = −   (4.14) 

 

 The same procedure is used for the deflection direction.  Equations (4.15)

through (4.21) summarize the equations to find E(FD). 

 

2
EP AW Ws +

=        (4.15) 

2
EP AW Wt −

=        (4.16) 

 

1 2 3 4 5( ) { }DE F I I I I I= + + + −     (4.17) 
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1 [ ( ) ( )]I normcdf t normcdf t= − −     (4.18) 

 

2 [ ( ) ( )]
2
EP A

A

W WI normcdf t normcdf s
W
+

= − − −    (4.19) 

 

3 [ ( ) ( )]
2
EP A

A

W WI normcdf s normcdf t
W
+

= −    (4.20) 
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A

I I e e
W

σ σσ

π

   
   − −
   
   − = −   (4.21) 

 

 Once we have the expected fractional coverage in both the range and 

deflection direction we combine them in equation (4.22) to find the total 

expected fractional coverage. 

 

( ) ( ) ( )C R DE F E F E F= ×     (4.22) 

 

 Given the fractional coverage of the weapon, we multiple it by the 

reliability of the weapon (R) and the conditional probability of damage (PCD) 

inside of the weapon lethal area as shown in equation (4.23).  The PCD term is 

equal to unity when the weapon lethal area is larger than the target area.  When 

the target area is larger, the PCD must go down in order to conserve the lethality 

of the weapon.  This is explained in detail in Reference 1. 

 

( ) ( ) ET
C CD C

EP EP

AEFD E F P R E F R
L W
 

= × × = × × × 
  (4.23) 
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B. MONTE CARLO SIMULATIONS 
 

 For the case of single weapons versus area targets, we run two Monte 

Carlo simulations to determine the probability of damaging the target.  The first 

Monte Carlo represents the weapon as a lethal area matrix consisting of 1 ft by 1 

ft cells populated with probability of damage values populated from the Carleton 

damage function.  The second Monte Carlo simulation represents the weapon 

with a lethal area matrix which has dimensions of a rectangular cookie cutter 

approximation of the Carleton damage function.  The details of these two 

simulations are explained in detail in Chapter 3 Section B.  This section also 

explains the process of varying the delivery accuracy of the weapon in each 

iteration of the Monte Carlo Simulation. 

 

1. Modeling Weapons with Carleton Damage Function 
 

 The first Monte Carlo simulation models the weapon as a lethal area 

matrix populated with the Carleton damage function.  This process begins with 

the user inputting values of the MAEF and impact angle (I) of the weapon.  This 

information provides us the means to calculate the aspect ratio (a) of the weapon 

radii which gives us the weapon radii (WRr and WRd), as shown in equations 

(4.24), (4.25), and (4.26). 

 

[ ]1 0.8cos( ),0.3
d

rWRa MAX I
WR

= = −     (4.24) 

r F
aWR MAE
π

= ×       (4.25) 

r
d
WRWR
a

=        (4.26) 

 

Now that the weapon radii are calculated,  the lethal area matrix can be filled 

with values from the Carleton damage function in equation (4.27).  The values x 



 

 45

and y are the distances in the range and deflection direction respectively from 

the weapon impact point.  For our Monte Carlo simulation, the weapon lethal 

area matrix is fixed in the ground plane and we will look at the distance from the 

target to the center of the weapon impact point in order to find the probability of 

damaging the target. 

 

 
2 2

2 2( , ) exp
r d

x yP x y
WR WR
 

= − + 
 

    (4.27) 

 

 

 An example iteration of a Monte Carlo simulation modeling the weapon 

as a lethal area matrix filled with the Carleton damage function are shown in 

Figure 4.4.  The target we are dealing with is 3 ft by 3 ft for this example.  We 

first look at a target location where the center of the target is placed at 3 ft past 

the aim point in the range direction, and 1 ft short of the aim point in the 

deflection direction.  Again, this target placement based on the delivery 

accuracy of the weapon.  By knowing the location of the center of the target, we 

can then superimpose the 3 ft by 3ft target onto the lethal area matrix on the 

ground plane.  We superimpose the target area onto the lethal area by dividing 

the target area into 1ft by 1ft cells.  This way, each division of the target area will 

overlap a specific value of the lethal area matrix.  This is shown by the dark grey 

3 ft by 3ft target area in Figure 4.4. 
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0.0000    0.0003    0.0013    0.0036    0.0059    0.0059    0.0036    0.0013    0.0003    0.0000 

0.0003    0.0022    0.0098    0.0266    0.0439    0.0439    0.0266    0.0098    0.0022    0.0003 

0.0013    0.0098    0.0439    0.1194    0.1969    0.1969    0.1194    0.0439    0.0098    0.0013 

0.0036    0.0266    0.1194    0.3247    0.5353    0.5353    0.3247    0.1194    0.0266    0.0036 

0.0059    0.0439    0.1969    0.5353    0.8825    0.8825    0.5353    0.1969    0.0439    0.0059 

0.0059    0.0439    0.1969    0.5353    0.8825    0.8825    0.5353    0.1969    0.0439    0.0059 

0.0036    0.0266    0.1194    0.3247    0.5353    0.5353    0.3247    0.1194    0.0266    0.0036 

0.0013    0.0098    0.0439    0.1194    0.1969    0.1969    0.1194    0.0439    0.0098    0.0013 

0.0003    0.0022    0.0098    0.0266    0.0439    0.0439    0.0266    0.0098    0.0022    0.0003 

0.0000    0.0003    0.0013    0.0036    0.0059    0.0059    0.0036    0.0013    0.0003    0.0000 

 

Figure 4.4: Example iteration of Monte Carlo simulation using Carleton 
damage function to fill lethal area matrix against an area 
target.  

 

Finding the probability of damaging the area target for each iteration, we need 

to account for the probability of damage in each 1ft by 1 ft division of the target 

area.  The total probability of damage is obtained by averaging the individual 

target cells.  This is shown in equation (4.28).   

 

/ ( )
1

/

j

d cell j
j

d i

P
P

j
==
∑

     (4.28)  

 

Equation (4.28) sums the probability of damage Pd/cell(j) from each of the j total 

number of 1 ft by 1 ft cells in the area target.  It then divides this sum by the total 

number of cells j to find the average Pd/i, which is the probability of damaging 

the area target for a given iteration i.  For our example this would give results 

shown in equation (4.29). 

 

/
0.5353 0.1969 0.0439 0.5353 0.1969 0.0439 0.3247 0.1194 0.0266 .2247

9d iP + + + + + + + +
= =  (4.29) 

 

Range 

Deflection Aim 
Point 
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For the full Monte Carlo simulation, we repeat this for n iterations, each 

individual iteration (i) resulting in its own probability of damage Pd/i.  The value n 

is the total number of iterations used in the Monte Carlo simulation.  The final 

probability of damage for the Monte Carlo simulation is the average of all of the 

Pd/I shown in equation (4.30) 

 

/
1

n

d i
i

d

P
P

n
==
∑

     (4.30) 

 

A Monte Carlo simulation with a weapon modeled with a lethal area 

matrix fill by the Carleton damage function is presented in Appendix A, Option 1.  

This is the same option for the single weapon versus unitary target case, so the 

user must input an area target size. 

 

2. Modeling Weapons with Rectangular Cookie Cutter   
  Approximation 
 
 

The second Monte Carlo simulation to find the probability of damaging an 

area target models a single weapon as a lethal area matrix rectangular cookie 

cutter.  The dimensions of this lethal area matrix are determined from user inputs 

as described earlier in Chapter III, equations (3.5), (3.15), and (3.16).  As in the 

previous Monte Carlo simulation, we place this lethal area matrix on the ground 

plane, and for each iteration of the simulation, the location of the target changes 

due to variations in the delivery accuracy of the weapon.  

An example iteration of the Monte Carlo simulation representing the 

weapon as a rectangular cookie cutter approximation of the Carleton damage 

function is given in Figure 4.5.  For this sample case, we assume that the user 

inputted values of weapon lethality produce a LET = 6ft and a WET = 6ft.  These 

are the dimensions of the rectangular cookie cutter lethal area.  This lethal area 

matrix is then fixed to the ground plane.  For this example, the center of the 3 ft 
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by 3 ft area target is 3 ft short of the aim point in the range direction, and 2 ft 

short of aim point in the deflection direction.  This location is based on the 

delivery accuracy of the weapon.  This is shown by the dark grey 3 ft by 3ft 

target area in Figure 4.5. 

 

 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Figure 4.5: Example iteration of Monte Carlo simulation using a rectangular 
cookie cutter lethal area matrix against an area target. 

 
 
Again, finding the probability of damaging the area target for each iteration, we 

need to account for the probability of damage in each 1ft by 1 ft division of the 

target area.  The total probability of damage is obtained by averaging the 

individual target cells.  This is shown above in equation (4.28).  For our example 

iteration we would compute Pd/I = .6667 as shown in equation (4.31). 

 

/
0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 .6667

9d iP + + + + + + + +
= =   (4.31) 

 

As before, for the full Monte Carlo simulation, we repeat this for n 

iterations, each individual iteration (i) resulting in its own probability of damage 

Pd/i.  The final probability of damage for the Monte Carlo simulation is the 

average of all of the Pd/I shown in equation (4.30). 

Range 

Deflection 
Aim 
Point 
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A Monte Carlo simulation with a weapon modeled by a lethal area matrix 

filled by a rectangular cookie cutter approximation of the Carleton damage 

function is presented in Appendix A, Option 2.  This is the same option for the 

single weapon versus unitary target case, so the user must input an area target 

size. 

 

C. RESULTS OF AREA TARGET COMPARISONS 
 
 The comparisons done this section are to find the differences between 

weapon effectiveness methodologies for the case of a single weapon against 

area targets.  In order to get a wide array of results each comparison was done 

for different user inputted values of MAEF, REP & DEP and ballistic dispersion in 

mils, in the normal plane.  The weapon impact angle and release slant range 

were kept at a constant 45° and 10,000 ft respectively for each comparison.  The 

size of the area target used for all comparisons was a 50 ft by 50 ft area. 

 

1. JMEM versus Carleton Damage Function 
 

 The first comparison done was the JMEM method results for computing 

damage probabilities of single weapons versus area targets against a Monte 

Carlo simulation modeling a weapon with the a lethal area matrix populated with 

the Carleton damage function.  We expect these methods to give different results 

since the JMEM approximates the fractional coverage and the effectiveness of 

the weapon against the target using equations (4.8) through (4.22) while the 

Monte Carlo simulation uses a lethal area matrix from the Carleton damage 

function.  Tables 4.1 and 4.2 present the results for the PK found for both the  

JMEM method and Monte Carlo simulation.  The shaded values in the Tables are 

obtained from the JMEM method, while the unshaded values are those of the 

Monte Carlo simulation. 

 

 



 

 50

MAEF=5000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.2079 0.1694 0.131 
 0.2285 0.1521 0.1007 
    
REP=25ft & DEP=25ft 0.3089 0.2445 0.181 
 0.3596 0.2226 0.135 
    
REP=50ft & DEP=25ft 0.1743 0.1551 0.1288 
 0.1987 0.152 0.1066 
    
REP=50ft & DEP=50ft 0.1168 0.1073 0.0929 
 0.1263 0.1039 0.0794 

 
Table 4.1: Results of JMEM and Monte Carlo for MAEF=5000ft2 

 

 

 

MAEF=1000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.0499 0.0394 0.0297 
 0.0487 0.0321 0.021 
    
REP=25ft & DEP=25ft 0.0877 0.0655 0.0454 
 0.0881 0.0511 0.0295 
    
REP=50ft & DEP=25ft 0.0471 0.04 0.0317 

 0.0487 0.0349 0.0232 

    

REP=50ft & DEP=50ft 0.0265 0.0242 0.0207 

 0.0269 0.0219 0.0166 

 

Table 4.2: Results of JMEM and Monte Carlo for MAEF=1000ft2 

 

 

 It can be seen in Tables 4.1 and 4.2 that the probability of damage results 

for the two methodologies does not match.  The lethal area as described by the 

MAEF does not seem to alter the error between the JMEM and Monte Carlo 

result, which is expected since both methodologies use the MAEF to find the 

weapon radii used to describe the lethality of the weapon.  We can imply then 
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that the delivery accuracy of the weapon is the root of the error.  This is 

especially true for cases involving weapon ballistic dispersion.  This was also 

case for the single weapon versus unitary target cases.  From this, we came 

make one of two assumptions.  One possibility is that the Monte Carlo simulation 

does not correctly represent the ballistic dispersion by varying it by a random 

number in each iteration of the code.  Another reason may be that the root sum 

squaring of the weapon ballistic dispersion with the aiming error as done in the 

JMEM method may not be a realistic approximation of the weapon target 

interaction.   

 Unlike the comparison between the JMEM and Monte Carlo simulation 

methods performed for single weapons against unitary targets, from Table 4.1 

and 4.2 we see an appreciable difference in the results for cases of zero ballistic 

dispersion.  This error could be due to the fact that the JMEM method 

approximates the fractional coverage of the weapon on the target in terms of  

Figure 4.3.  This differs from the Monte Carlo simulation, in that the Monte Carlo 

simulation computes the fractional coverage directly from the ground plane, 

where no approximations are used.   

 It is also interesting to note that the Monte Carlo result is constantly 

greater that the JMEM result for non-zero ballistic dispersion cases, which shows 

that the JMEM is a more conservative estimate of damage.  However, the results 

for zero ballistic dispersion cases are generally more conservative in the Monte 

Carlo simulation. 

 

2. JMEM versus Rectangular Cookie Cutter Approximation 
 

 The last comparison for single weapons against area targets is between 

the JMEM method and a Monte Carlo simulation which represents the weapon 

as a rectangular cookie cutter.  This is a particularly interesting comparison 

because both methods represent the weapon lethality in terms of a rectangular 

lethal area.  The Monte Carlo simulation always represents the weapon lethal 

area as a rectangular cookie cutter approximation of the Carleton damage 
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function, which is based off of the user inputted values of weapon lethality.  Again, 

this rectangular cookie cutter has dimensions of LET and WET. The JMEM method, 

however, uses a rectangular cookie cutter dimensions based on the sizes of the 

target and LET and WET as shown in equations (4.2) and (4.3).  Table 4.3 and 4.4 

present the results for the PK found for both the JMEM method and Monte Carlo 

simulation.  The shaded values in the Tables are obtained from the JMEM 

method, while the unshaded values are those of the Monte Carlo simulation. 

 

MAEF=5000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.2253 0.181 0.1381 
 0.2285 0.1521 0.1007 
    
REP=25ft & DEP=25ft 0.3564 0.2756 0.1994 
 0.3596 0.2226 0.135 
    
REP=50ft & DEP=25ft 0.1958 0.1718 0.1405 
 0.1987 0.152 0.1066 
    
REP=50ft & DEP=50ft 0.1237 0.1127 0.0969 
 0.1263 0.1039 0.0794 

 

Table 4.3: Results of JMEM and Monte Carlo for MAEF=5000ft2 

MAEF=1000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.0486 0.0381 0.0286 
 0.0487 0.0321 0.021 
    
REP=25ft & DEP=25ft 0.0879 0.0647 0.0445 
 0.0881 0.0511 0.0295 
    
REP=50ft & DEP=25ft 0.0466 0.0394 0.0309 
 0.0487 0.0349 0.0232 
    
REP=50ft & DEP=50ft 0.0258 0.0233 0.02 
 0.0269 0.0219 0.0166 

 

Table 4.4: Results of JMEM and Monte Carlo for MAEF=1000ft2 
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 The trends shown in Tables 4.3 and 4.4 are very similar to those 

presented for the other Monte Carlo versus JMEM comparisons.  The most 

recognizable trend is the fact that error between the JMEM and Monte Carlo 

simulation is greatest for cases involving high weapon ballistic dispersion.  For 

this comparison less error is present for cases with zero ballistic dispersion than 

there was for the comparison using the Monte Carlo simulation representing the 

weapon with the Carleton damage function.  A viable explanation for this is that 

the JMEM and Monte Carlo using the rectangular cookie cutter model the 

weapon lethal area more in a similar fashion.  This is not the case that was 

presented earlier in this chapter, because the Monte Carlo simulation 

representing the weapon with the Carleton damage function does not use an 

approximation of the Carleton damage function in calculating the weapon lethal 

area matrix. 

 

 Again, a prevalent similarity between all the comparisons presented is that 

the Monte Carlo simulation consistently gives greater damage results than the 

JMEM method, leading to the conclusion that the JMEM is more conservative 

than the Monte Carlo for all delivery accuracy inputs.   
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V. STICKS OF WEAPONS VERSUS AREA TARGETS 
 

 There are times when an aircraft will drop several weapons against an 

area target, rather than just a single weapon.  By dropping several weapons 

during one aircraft sortie we increase the damaged area in the ground plane.  At 

times this can increase the probability of damaging the target area depending on 

the size and delivery accuracy of the stick. 

 When a stick of weapons is released against an area target, the pattern of 

weapon impacts on the ground determines the effectiveness of the stick.  Figure 

5.1 shows an example of the pattern of impact points for a stick of four weapons.  

Each impact point is modeled with a small explosive picture.  The dotted 

rectangles represent the lethal area of each weapon.  By knowing the location of 

each impact point and the size of the lethal area for each weapon, we define 

dimensions of the stick, and impact point pattern.  We define the stick length and 

width, LS and WS, as the dimensions of the smallest rectangle in the ground 

plane that encloses each impact point of the weapons in the stick.  These impact 

points are also the centers of each respective weapon’s lethal area.  The pattern 

length and width, LP and WP, are defined as the dimensions of the smallest 

rectangle that encloses all of the weapons’ lethal areas.  
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Figure 5.1: Definition of stick and pattern dimensions. 

 

 The location of the impact points on the ground plane is highly dependent 

on each of the weapons’ release conditions.  In the range direction, the impact 

pattern is determined by the intervalometer setting of the aircraft.  The 

intervalometer is a timer in the aircraft that sends electrical pulses to the 

mechanism that releases the weapons from the aircraft.  For example, an 

intervalometer setting of .5 seconds, which means, one or more weapons will be 

released every .5 seconds.  For a given stick delivery we define the number of 

intervalometer pulses sent, or nr, and the number of weapons released for each 

pulse, or np.  In the deflection direction, the stick pattern is also affected by the 

release conditions.  This dependence stems from the location of the weapon on 

the aircraft.  We would expect a weapon released from under the aircraft 

fuselage to land in a different position than one released from the tip of the 

aircraft’s wing.  In this thesis, we will not study the effects of different weapon  

LP 

WP 

WS 

LS 
Direction 
of Flight 
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release positions on the aircraft.  We instead assume that half of the weapons fall 

from the same position one wing, and the other half on the same position on the 

opposite wing. 

Another determining factor of the impact points is the delivery accuracy of 

the stick.  We define the delivery accuracy differently for a stick of weapons than 

we do a single weapon.       

In this thesis we will compare the probability of damaging an area target of 

dimensions 50 ft by 50 ft using different methodologies.  As before, we will 

compare the JMEM method of computing the probability of damaging an area 

target to two Monte Carlo simulations; the first determining damage using the 

Carleton damage function, and the other using a rectangular cookie cutter 

approximation of the Carleton damage function to compute damage. 

 
A. OLD JMEM METHOD 
 
 Recently the JMEM changed its methodologies to determine the 

effectiveness of sticks of weapons against area targets.  The old JMEM method 

for sticks takes heavily into account the possible overlap situations between the 

weapon lethal areas of the stick weapons.  The following explains this method in 

detail. 

 The old JMEM method first calculates the effectiveness of the individual 

weapons in the stick.  For the calculations in this thesis, we assume that each of 

the weapons in the stick is identical.  From the user inputted value of MAEF, 

impact angle I, and the slant range SR, we find the effective target length and 

width (LET and WET).  This is shown in equations (5.1), (5.2), and (5.3). 

 

(5.1) 

 

ET FL MAE a= ×       (5.2) 

 

[1 0.8cos( ),0.3]r

d

WRa MAX I
WR

= = −
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/ET ETW L a=        (5.3) 

 

The next step is to determine the effect of ballistic dispersion on the stick 

effectiveness.  We apply the ballistic dispersion to each weapon by enlarging the 

area of effectiveness.  This is done because we cannot combine the ballistic 

dispersion error with the aiming error when dealing with sticks.  Ballistic 

dispersion in sticks affects each weapon in the stick, rather than the stick as a 

whole.  A detailed explanation of the delivery accuracy of sticks is presented in 

Section C of this chapter.  The new dimensions of the effective area are called LB 

and WB.  To calculate LB and WB, we first need to find the ballistic dispersion as a 

standard deviation in feet in the range and deflection directions in the ground 

plane, or xbr and xbd.  These values are calculated using equations (5.4) and (5.5). 

 

1000sin( )
b

br
SRx

I
σ×

=
     (5.4) 

1000
b

bd
SRx σ×

=       (5.5) 

 

One thing to note about these values is that they are similar to the xbr and xbd 

calculated for the single weapon cases, but they are without the factor of 0.6745.  

For sticks, we do not use the ballistic dispersion as an error probable because 

we do not root sum square the values with the aiming error probables.  Therefore, 

we keep the ballistic dispersion in terms of standard deviations.  Once we have 

xbr and xbd we can find LB and WB through equations (5.6) and (5.7). 

 

2 28B ET brL L x= +      (5.6) 

 

2 28B ET bdW W x= +      (5.7) 
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With LB and WB, along with the user inputted values of stick length (LS) and stick 

width (WS), we can define the pattern length (LP) and width (WP).  This is shown 

in equations (5.8) and (5.9). 

 

P S BL L L= +       (5.8) 

P S BW W W= +       (5.9) 

 

 Since we have increased the effective area of the weapon with the ballistic 

dispersion, we need to change the conditional probability of damage inside the 

rectangle LB by WB in order to preserve the lethality of the weapon.  The new 

conditional probability of damage, PCD1, is a fraction of the original probability of 

damage, PCD.  This is found through equation (5.10). 

 

1
ET ET

CD CD
B B

L WP P
L W

=      (5.10) 

 

A graphical representation of how the old JMEM method enlarges the area of 

effectiveness of each weapon is shown in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Modification of weapon AET due to ballistic dispersion.   
       (From Ref. [1]) 
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 The next step in the old JMEM method for sticks is to account for different 

overlap scenarios of the stick weapons’ effective areas.  For the overlap in the 

deflection direction, we define a degree of overlap in the deflection direction, or 

nod, which is calculated from the stick width (WS), pattern width (WP), and the 

number of weapons released per intervalometer pulse (np).  This is shown in 

equation (5.11).   

 

p B
od

P

n W
n

W
=       (5.11) 

 

In Figure 5.3 we show how weapons may overlap (left) or may not overlap (right) 

in the deflection direction. 

 

 

 

 

 

 

 

Figure 5.3: Weapons overlapping (left) and not overlapping (right) in the 
deflection direction. (From Ref. [1]) 

 
 

This nod term can also be defined as what percentage of the np released 

weapons can fit into the stick pattern width.  We can tell a great deal from the 

degree of overlap.  If nod >1, we know there is overlap between the stick 

weapons in the deflection direction.  If this is the case, we find the conditional 

probability of damage in the deflection direction, or PCD/d, by using the survival 

rule and powering up the single weapon conditional damage PCD1 by the degree 

of overlap.  This is shown in equation (5.12). 

 

WP WP 

WB WB 
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/ 11 (1 ) odn
CD d CDP P= − −    (5.12) 

 

However, if nod <1, we have no overlap in the deflection direction.  In this case 

PCD/d is found by equation (5.13). 

 

/ 1
B

CD d p CD
P

WP n P
W

=      (5.13) 

 

This analysis in the deflection direction results in a rectangle that combines 

weapons in the deflection direction that has a damage function equal to PCD/d.  

This rectangle is shown in Figure 5.4. 

 

 

 

 

 

 

 

Figure 5.4: Combination of weapons in deflection direction. (From Ref. [1]) 

 
 

A similar analysis is performed for overlap in the range direction.  Rather 

than using np to determine the conditional probability, we use the number of 

intervalometer pulses, or nr.  We define the degree of overlap in the range 

direction in equation (5.14). 

 

r B
or

P

n Ln
L

=       (5.14) 
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WP 
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In Figure 5.5 we show how weapons may overlap (left) or may not overlap (right) 

in the deflection direction. 

 

 

 

 

 

 

 

 
 

Figure 5.5: Weapons overlapping (left) and not overlapping (right) in the  
   range direction. (From Ref. [1]) 
 

If nor >1, we know there is overlap between the stick weapons in the range 

direction.  For this is the case, we find the conditional probability of damage for 

the whole pattern, or PCDS, by powering up PCD/d by the degree of overlap in the 

range direction.  This is shown in equation (5.15). 

 

/1 (1 ) orn
CDS CD dP P= − −    (5.15) 

 

However, if nor <1, we have no overlap in the range direction, and PCDS is found 

by equation (5.16). 

 

/
B

CDS r CD d
P

LP n P
L

=      (5.16) 

 

Now we have taken the stick of weapons and represented the stick as a single 

effectiveness area rectangle with dimensions LP and WP, with a conditional 

probability of damage of PCDS as shown in Figure 5.6. 

 

LP 

LB 

LB LP 
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Figure 5.6:  Stick pattern dimension and damage function. (From Ref. [1]) 

 

 The pattern shown in Figure 5.6 is now considered a single effectiveness 

area.  The old JMEM treats this case similarly to the single weapon versus area 

targets discussed in Chapter IV.  The fractional coverage analysis is identical, but 

the effective pattern length and width (LEP and WEP) is found by taking the 

maximum of the stick pattern dimensions and the target size.  The target size has 

dimensions of La in the range direction, and Wa in the deflection direction.  The 

effective pattern dimensions are calculated with equations (5.17) and (5.18). 

 

( , )EP P aL MAX L L=      (5.17) 

 

( , )EP P aW MAX W W=      (5.18) 

 

 The following is a summary of the equations used to find the expected 

fractional coverage of a single effectiveness area on a target area.  For a detailed 

explanation of the equations used to find fractional coverage and fractional 

damage, please refer to Chapter IV Section A. 
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Range Direction 

 

2
EP AL Ls +

=         (5.19) 

2
EP AL Lt −

=         (5.20) 

1 2 3 4 5( ) { }RE F I I I I I= + + + −      (5.21) 

1 [ ( ) ( )]I normcdf t normcdf t= − −      (5.22) 

2 [ ( ) ( )]
2
EP A

A

L LI normcdf t normcdf s
L
+

= − − −     (5.23) 

3 [ ( ) ( )]
2
EP A

A

L LI normcdf s normcdf t
L
+

= −     (5.24) 

2 2

2 2
4 5

2 [ ]
2

x x

s t

x

A

I I e e
L

σ σσ
π

   
− −      
   − = −    (5.25) 

 

Deflection Direction 

 

2
EP AW Ws +

=         (5.26) 

2
EP AW Wt −

=         (5.27) 

1 2 3 4 5( ) { }DE F I I I I I= + + + −      (5.28) 

1 [ ( ) ( )]I normcdf t normcdf t= − −      (5.29) 

2 [ ( ) ( )]
2
EP A

A

W WI normcdf t normcdf s
W
+

= − − −     (5.30) 

3 [ ( ) ( )]
2
EP A

A

W WI normcdf s normcdf t
W
+

= −     (5.31) 

2 2

2 2
4 5

2
[ ]

2
y y

s t

y

A

I I e e
W

σ σσ

π

   
   − −
   
   − = −    (5.32) 
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Combined Range and Deflection 

 

( ) ( ) ( )C R DE F E F E F= ×     (5.33) 

 

 After finding the expected fractional coverage, or E(FC), we can combined 

what we’ve calculated, as well as our knowledge of the weapon reliability (R), to 

find the expected fractional damage (EFD) of the stick against an area target.  

This is shown in equation (5.34). 

 

( ) P P
C CDS

EP EP

L WEFD E F R P
L W
 

= × × × 
 

    (5.34) 

 

 

B. CURRENT JMEM METHOD 
 

 The current JMEM method for computing the effectiveness of sticks of 

weapons is similar to that of the JMEM method it replaced.  The difference 

between the methods is the handling of the possible overlap conditions of the 

lethal areas of each stick weapon. 

 Computing the lethal area of each stick weapon in the JMEM method 

begins with the handling of ballistic dispersion effects on the individual weapons 

of the stick.  This is done by enlarging the effective lethal area of each weapon to 

account for ballistic dispersion.  The enlarged dimensions are defined as LB and 

WB, and are calculated with same formulas that were used for the old JMEM 

method.  The formulas are restated in equations (5.35) and (5.36). 

 

2 28B ET brL L x= +      (5.35) 

 

2 28B ET bdW W x= +      (5.36) 
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The updated JMEM method then calculates the possible overlap conditions for 

the lethal enlarged effective areas of the weapons in the stick upon each other.  

An example of the possible overlap conditions of the lethal weapon areas is 

shown in Figure 5.7. 

 

 

Figure 5.7: Example of weapon lethal areas overlapping in stick.  (From Ref. [2]) 

 

 The JMEM then calculates the conditional probability of damage in each 

area shown in Figure 5.7.  To find the conditional probability of damage for each 

of the overlapping areas we implement the survival rule, which is given in 

equation (5.37).  This equation gives the PCD of the overlap area, based on the 

conditional probability of damage for each weapon lethal area (PCD/weapon) and the 

number of weapons that overlap the specific area.   

 

/1 (1 )nCD CD weaponP P= − −     (5.37) 
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Once these different damage probabilities for each overlap area have been 

calculated, the JMEM performs a fractional coverage analysis of the stick against 

the area target.   

The process of calculating the conditional probability of damage for each 

overlap area, as well as the detailed fractional coverage analysis is explain in 

great detail in Reference 2. 

  

 

C. MONTE CARLO SIMULATIONS 
  

For the case of a stick of weapons versus area targets, we run two Monte 

Carlo simulations to determine the probability of damaging the target.  The first 

Monte Carlo simulation uses the Carleton damage function to determine the 

damage caused to the area target.  The second Monte Carlo simulation uses a 

rectangular cookie cutter approximation of the Carleton damage function to find 

the damage to an area target.   

As before with single weapons, delivery accuracy plays a large role in 

determining the probability of damaging a target.  In the case of sticks, we cannot 

directly combine the aiming error and ballistic dispersion error.  For sticks, the 

aiming error affects the accuracy of the stick of weapons as a whole.  The 

ballistic dispersion, on the other hand, affects the impact point of each individual 

weapon in the stick.  Figure 5.8 illustrates two situations where a stick of 4 

weapons is aimed at the aim point in the center. The aiming accuracy of the each  

stick is different, so they do not land in the same location.  As can be seen in 

Figure 5.8, the stick and pattern dimensions no not change, only the location of 

the stick. 
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Figure 5.8: Effects of aiming error on a stick of weapons. 

 

 

Where the aiming error affects the location of the entire stick, ballistic dispersion 

errors change the pattern length (LP) and width (WP) of the stick.  As described 

before, these dimensions create the smallest rectangle that encloses all of the 

lethal areas of each weapon.  The ballistic dispersion changes the pattern 

dimensions by affecting the individual impact point of each weapon.  This is 

shown in Figure 5.9.   
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Figure 5.9: Effects of ballistic dispersion error on a stick of weapons. 

 

We can see in Figure 5.9 how the ballistic dispersion affects the impact point of 

each weapon, thus changing the pattern dimensions of the stick. 

 The Monte Carlo simulations run in this thesis are for a stick of four 

weapons that has a stick length of 100 ft and a stick width of 100 ft.  Figure 5.10 

gives a visual representation of this by placing a Cartesian coordinate system on 

the ground, and centering the area target about the origin (shown as a dashed 

rectangle).  With no aiming error or ballistic dispersion present in the problem, 

the stick would land as shown in Figure 5.10.  We can see that the weapons are 

evenly spaced at a distance of 100 ft in the stick.   
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Figure 5.10: Monte Carlo stick simulations scenario. 

 

 The first step in the Monte Carlo simulations is to find the standard 

deviation of the aiming error and ballistic dispersion in the ground plane.  This is 

calculated from the user inputted values of the range error probable (REP), 

deflection (DEP), slant range (SR), and impact angle (I).  This is shown in 

equations (5.38), (5.39), (5.40), and (5.41). 
 

_ 0.6745aim range
REPσ =      (5.38) 

_ 0.6745aim deflection
DEPσ =      (5.39) 

1000sin( )
b

br
SRx

I
σ×

=
     (5.40)

 

1000
b

bd
SRx σ×

=       (5.41) 
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All four of the delivery accuracy standard deviations (σaim_range, σaim_deflection, xbr, 

and xbd) are then multiplied by a random number from a normal distribution.  This 

normal distribution has a mean value of zero and a standard deviation of one.  

Using this normal distribution allows us to assume that the average probability of 

damage for a large number of stick trials will equal the expected value of the 

damage function at the desired aim point.   

With the ballistic dispersion error affecting each weapon individually, and 

the aiming error affecting the stick as a whole, we are able to find the location of 

each individual weapon impact point.  At each impact point, we represent the 

weapon either by a lethal area matrix filled by the Carleton damage function or a 

rectangular cookie cutter, depending on the simulation.   

The final step of the Monte Carlo simulations is to determine the 

probability of damage to the target from each of the four stick weapons.   This is 

accomplished by dividing the 50 ft by 50 ft target into 1ft by 1ft cells, and using 

the survival rule to find the probability of damage in each target cell.  Figure 5.11 

shows an example of how we combine the probabilities of damage from each of 

the four weapons in a stick on a specific cell in the target area.  The probability of 

damage contributions from the four weapons are defined as Pd1, Pd2, Pd3, and 

Pd4. 

 

 

Figure 5.11: Damage contributions of stick weapons. 
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To calculate the probability of damage due to the contributions from each of the 

four weapons we use the survival rule.  The survival rule is a formula that 

calculates the probability of damaging a target given multiple damage 

contributions from the four weapons.  This is shown in equation (5.42). 

 

1 2 3 41- (1- )*(1- )*(1- )*(1- )cellPd Pd Pd Pd Pd=   (5.42) 

 

We repeat this survival rule on each of the j number of cells in the target matrix.  

To find the overall probability of damage for a given Monte Carlo iteration i, we 

sum all of the Pd/cell, and divide it by the total number of cells j.  This is shown in 

equation (5.43). 

 

/ ( )
1

/

j

d cell j
j

d i

P
P

j
==
∑

     (5.43) 

 

For the full Monte Carlo simulation, we repeat this for n iterations, each 

individual iteration (i) resulting in its own probability of damage Pd/i.  The value n 

is the total number of iterations used in the Monte Carlo simulation.  The final 

probability of damage for the Monte Carlo simulation is the average of all of the 

Pd/I shown in equation (5.44). 
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     (5.44) 
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1. Modeling Weapons with Carleton Damage Function 
 

 The first Monte Carlo simulation utilizes the Carleton damage function to 

determine the amount of damage done to a target element given the distance 

from the element to the weapon impact points in a stick of weapons.  In this 

simulation, we will assume that each of the weapons in the stick is identical in 

their effectiveness.  We determine this weapon effectiveness in terms of the 

weapon radii WRr and WRd.  The weapon radii are found from the user inputted 

values of MAEF, impact angle I, and the slant range SR.  This is shown in 

equations (5.45), (5.46), and (5.47). 

 

[ ]1 0.8cos( ),0.3
d

rWRa MAX I
WR

= = −     (5.45) 

r F
aWR MAE
π

= ×      (5.46) 

r
d
WRWR
a

=       (5.47) 

 

These values of weapon radii stay constant through each iteration of the Monte 

Carlo simulation.  The values that change with each iteration will be the individual 

weapon impact points, as discussed before. 

 Unlike the single weapon cases against unitary and area targets, there is 

not a lethal area matrix used in the Monte Carlo simulation for sticks using the 

Carleton damage function.  Instead, we determine the location of each weapon 

impact point in the stick and determine the distance from the impact points to the 

target area.  To do this, we divide the target area into 1ft by 1ft cells, and find the 

distance from each these cells to the impact points.  The Carleton damage 

function is given in equation (5.48). 

 
2 2

2 2( , ) expd
r d

x yP x y
WR WR
 

= − + 
 

   (5.48) 
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We have already calculated the weapon radii, and we define the x and y terms in 

equation (5.48) as the distance in range and deflection respectively from a 

weapon impact point to a given cell in the area target.  For a given cell in the 

area target, we will get a Pd from the Carleton damage function, for each of the 

four weapons in the stick.  For example, let us say have a scenario where the 

weapon radii are both 10 ft (WRr =10 and WRd = 10).  We will also say we are 

looking at a target cell 3 ft from the impact point of the first weapon (in a stick of 

four) in the range direction, and 5 ft in the deflection direction.  We can find the 

probability of damage due to this weapon on that target cell as shown in equation 

(5.49). 

 
2 2

1 2 2

3 5exp 0.7118
10 10

Pd
 

= − + = 
 

   (5.49) 

 

This value of 0.7118 will be called Pd1, since it is the probability of damage 

caused by the first weapon in the stick.  We will assume the other three weapons 

in the stick cause probabilities of damage equal to 0.5312, 0.3041, and 0.7590 

respectively.  Now that we have Pd1, Pd2, Pd3, and Pd4, we use the survival rule 

explain in equatrion (5.42)to find the overall probability of damage caused by the 

example stick.  The overall Pd of the cell for this example is shown in equation 

(5.50). 

 

1- (1- 0.7118)*(1- 0.5312)*(1- 0.3041)*(1- 0.7590) 0.9773cellPd = =  (5.50) 

 

The overall Pd of the target cell is 0.9773.  This process is then repeated for all of 

the cells in the target area.  To finish the iteration, the Pd’s of each of the area 

target cells are averaged to find a total probability of damaging the area target. 
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For the full Monte Carlo simulation, we would repeat this process for n 

iterations, each individual iteration (i) resulting in its own probability of damage 

Pd/i.  The value n is the total number of iterations used in the Monte Carlo 

simulation.  The final probability of damage for the Monte Carlo simulation is the 

average of all of the Pd/I shown in equation (5.51). 

 

/
1

n

d i
i

d

P
P

n
==
∑

     (5.51) 

 

The number of iterations (n) used in the Monte Carlo simulation used to 

compare the Monte Carlo and JMEM methods for sticks was set to one hundred 

thousand.  In running the Monte Carlo simulation multiple times, we ensure that 

the resulting Pd from each simulation did not change.  This shows that the 

simulation was converging to a single value, which we would expect.  After 

testing different values of n, it was found that one hundred thousand provides for 

this convergence.   

 A Monte Carlo simulation modeling a stick of weapons using with the 

Carleton damage function is presented in Appendix B, Option 1.   

 

2. Modeling Weapons with Rectangular Cookie Cutter   
  Approximation 
  

 The second Monte Carlo simulation utilizes a rectangular cookie cutter 

approximation of the Carleton damage function to determine the amount of 

damage done to a target element given the distance from the element to the 

weapon impact points in a stick of weapons.  We again assume that each 

weapon in the stick has identical lethality.  We define this lethality as we have 

before with equations (5.52), (5.53), and (5.54). 

 

[ ]1 0.8cos( ),0.3
d

rWRa MAX I
WR

= = −     (5.52) 
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ET FL MAE a= ×      (5.53) 

/ET ETW L a=       (5.54) 

 

 The calculation of the probability of damage against the area target is very 

similar to the Monte Carlo simulation using the Carleton damage function.  We 

first determine the location of each weapon impact point in the stick and 

determine the distance from the impact points to the target area.  To do this, we 

divide the target area into 1ft by 1ft cells, and find the distance from each these 

cells to the impact points.  At each of the weapon impact points, a rectangular 

cookie cutter with dimensions LET and WET is placed to represent the weapon. 

 An example iteration of a Monte Carlo simulation using rectangular cookie 

cutter representations of the weapons is shown in Figure 5.12.  In this example 

we have four weapons, each represented by rectangular cookie cutters of 

dimensions LET and WET= 3ft.  The stick of weapons dropped against a 3ft by 3ft 

area target which is shaded in light grey.  Due to the assumed delivery accuracy 

errors, the stick has not fallen centered upon the area target.  
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 

0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 

0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

     0.0      1.0      1.0      1.0      0.0      0.0      1.0      1.0      1.0           0.0   

0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 

0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Figure 5.12: Example iteration of Monte Carlo stick simulation using 
rectangular cookie cutter lethal area matrices against an 
area target. 

 

Unlike the Monte Carlo simulation using the Carleton damage function, for the 

rectangular cookie cutter Monte Carlo simulation we do not need to use the 

survival rule to find the probability of damage caused by the stick.  Since each 

weapon is represented by a rectangular cookie cutter, the Pd inside each weapon 

effective area is equal to one.  Therefore, each 1 ft by 1 ft cell of the area target 

is either completely damaged by the stick (Pdcell= 1) or not at all (Pdcell=0).  For 

the example shown in Figure 5.12 we see that the top left hand cell, which is 

shaded in dark grey, is completely damaged by the top left hand weapon of the 

stick.  This Pdcell would equal 1 whether or not another weapon of the stick 

contributes damage to the cell.  The probability of damaging the whole area 

target for this iteration, or Pd/i, is equal to the average of all the Pd/cell of each cell 

in the target area.  For the example iteration above we find that the Pd/i is shown 

in equation (5.55) 

 

/
1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.2222

9d iP + + + + + + + +
= =  (5.55) 
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For the full Monte Carlo simulation, we would repeat this process for n 

iterations, each individual iteration (i) resulting in its own probability of damage 

Pd/i.  The value n is the total number of iterations used in the Monte Carlo 

simulation.  The final probability of damage for the Monte Carlo simulation is the 

average of all of the Pd/I shown in equation (5.56). 

 

/
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n
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i

d

P
P

n
==
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     (5.56) 

 

The number of iterations (n) used in the Monte Carlo simulation used to 

compare the Monte Carlo and JMEM methods for sticks was set to one hundred 

thousand.  In running the Monte Carlo simulation multiple times, we ensure that 

the resulting Pd from each simulation did not change.  This shows that the 

simulation was converging to a single value, which we would expect.  After 

testing different values of n, it was found that one hundred thousand provides for 

this convergence.   

 A Monte Carlo simulation with a stick modeled as rectangular cookie 

cutter approximations of the Carleton damage function is presented in Appendix 

B, Option 2.   

 

D. RESULTS OF STICK COMPARISONS 
 
 The comparisons done this section are to find the differences between 

weapon effectiveness methodologies for the case of a stick of weapons against 

area targets.  In order to get a wide array of results each comparison was done 

for different user inputted values of MAEF, REP & DEP and ballistic dispersion in 

mils, in the normal plane.  The weapon impact angle and release slant range 

were kept at a constant 45° and 10,000 ft respectively for each comparison.  The  
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size of the area target used for all comparisons was a 50 ft by 50 ft area.  Each 

test case dealt with a stick of four weapons with a stick length and width equal to 

100 ft.   

 

1. Updated JMEM Method versus Old JMEM Method 
 

 The first comparison completed was the updated JMEM method results for 

computing damage probabilities of sticks of weapons versus area targets against 

the old JMEM method.  We would expect these methods to produce different 

results due to the way each method calculates the possible overlap scenarios for 

weapons in the stick.  Tables 5.1 and 5.2 present the results for the PK found for 

both the JMEM methods.  The shaded values in the Tables are obtained from the 

new JMEM method, while the unshaded values are those of the old JMEM 

method. 

 

 

 

MAEF=5000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.4933 0.3099 0.2093 
 0.3636 0.3422 0.2877 
    
REP=25ft & DEP=25ft 0.589 0.35 0.2241 
 0.4334 0.4159 0.3522 
    
REP=50ft & DEP=25ft 0.421 0.3057 0.2144 
 0.3888 0.3428 0.2928 
    
REP=50ft & DEP=50ft 0.3526 0.2707 0.2003 
 0.3261 0.2813 0.2385 

 

Table 5.1: Results of new JMEM and old JMEM for weapons of 

MAEF=5000ft2 
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MAEF=1000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.1311 0.0732 0.0475 
 0.0773 0.08 0.0674 
    
REP=25ft & DEP=25ft 0.1826 0.0893 0.0527 
 0.0863 0.0966 0.0845 
    
REP=50ft & DEP=25ft 0.1208 0.077 0.0502 
 0.0797 0.0781 0.0687 
    
REP=50ft & DEP=50ft 0.0867 0.0631 0.0453 
 0.0714 0.0647 0.0547 

 

Table 5.2: Results of new JMEM and old JMEM for weapons of 

MAEF=1000ft2 

 

 It can be seen from Tables 5.1 and 5.2 that the damage results do not 

match, as was expected from the different methods.  We see that the new JMEM 

method is generally more conservative in its damage estimates for cases of zero 

ballistic dispersion than the JMEM method it replaced.  For the cases involving 

ballistic dispersion, the new JMEM gives larger damage estimates.  We would 

assume that the ballistic dispersion is the cause of the differences in damage 

estimates, but both JMEM methods treat the ballistic dispersion in the same way; 

by enlarging the effective target area of the weapon.  This leaves the difference 

in modeling the overlap conditions of the weapons in the stick.  The older JMEM 

method defines degrees of overlap of stick weapons in the deflection and range 

directions.  The new JMEM method calculates conditional probabilities of 

damage in each of the areas where the weapon effectiveness rectangles overlap, 

as discussed in detail in Reference 2.   
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2. JMEM versus Carleton Damage Function 
 

 The next comparison done was between the JMEM method results for 

computing damage probabilities of sticks of weapons versus area targets and a 

Monte Carlo using the Carleton damage function to calculate damage 

probabilities.  The JMEM and Monte Carlo simulation are expected to yield 

different damage probabilities.  This is due to a difference in incorporating 

weapon ballistic dispersion and the calculation of damage itself.  Tables 5.3 and 

5.4 present the results for the PK found for both the JMEM method and Monte 

Carlo simulation.  The shaded values in the Tables are obtained from the JMEM 

method, while the unshaded values are those of the Monte Carlo simulation. 

 

 

MAEF=5000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.3443 0.2992 0.241 
 0.3636 0.3422 0.2877 
    
REP=25ft & DEP=25ft 0.4097 0.3569 0.2838 
 0.4334 0.4159 0.3522 
    
REP=50ft & DEP=25ft 0.3373 0.2966 0.2448 
 0.3888 0.3428 0.2928 
    
REP=50ft & DEP=50ft 0.2827 0.249 0.2085 
 0.3261 0.2813 0.2385 

 

Table 5.3: Results of JMEM and Monte Carlo for MAEF=5000ft2 
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MAEF=1000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.0803 0.0711 0.0563 
 0.0773 0.08 0.0674 
    
REP=25ft & DEP=25ft 0.0971 0.0861 0.0673 
 0.0863 0.0966 0.0845 
    
REP=50ft & DEP=25ft 0.0804 0.0704 0.0572 
 0.0797 0.0781 0.0687 
    
REP=50ft & DEP=50ft 0.0666 0.0581 0.0479 
 0.0714 0.0647 0.0547 

 

Table 5.4: Results of JMEM and Monte Carlo for MAEF=1000ft2 

 

 It can be seen in Tables 5.3 and 5.4 that the probability of damage results 

for the two methodologies does not match.  This was expected due to the 

significant difference between the JMEM and Monte Carlo simulation methods.  

When looking at the results, a majority of the comparisons show that the JMEM 

method is more conservative than the Monte Carlo simulation.  The few times 

where the JMEM results are greater than the Monte Carlo simulation are cases 

with a MAEF = 1000 ft2.  This leads us to believe that the differences in the 

dealing with the lethality of the stick weapons in the two methods leads to 

differences in the damage caused by those weapons.  This is intuitive because 

the JMEM method increases each weapons lethal area due to the ballistic 

dispersion, while the Monte Carlo simulation obtains the damage directly from 

the Carleton damage function.  The Monte Carlo simulation deals with ballistic 

dispersion by moving the individual weapon impact points of the stick.   

 The calculation of the damage to each 1 ft by 1 ft cell of the area target is 

also handled differently in the JMEM method and Monte Carlo simulation.  As 

discussed earlier, the JMEM method takes each impact point of the stick 
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weapons, and places an effective lethal area on each impact point to represent 

the weapon lethality.  The method then calculates the conditional probability of 

each lethal area, and each overlap area where the lethal areas of two or more 

stick weapons have overlapped.  The JMEM then uses fractional coverage 

analysis to find the damage done to the whole area target.  The Monte Carlo 

simulation represents each weapon with a Carleton damage function.  The fact 

that the Monte Carlo simulation uses the Carleton damage function directly leads 

to assumption that the Monte Carlo is more accurate than the JMEM method, 

which uses approximations of the Carleton damage function. 

 

3. JMEM versus Rectangular Cookie Cutter Approximation 
 

 The last comparison for sticks against area targets is between the JMEM 

method and a Monte Carlo simulation which represents the stick weapons 

rectangular cookie cutters. Again, we do not expect the same results for both of 

these models.  We would expect, however, that the Monte Carlo simulation using 

rectangular cookie cutters to be closer to the JMEM results than the Monte Carlo 

simulation which used the Carleton damage function directly.  This is because 

both the JMEM and the Monte Carlo simulation using the rectangular cookie 

cutter make approximations of the Carleton damage function in order to find the 

probability of damaging the area target.   Tables 5.5 and 5.6 present the results 

for the PK found for both the JMEM method and Monte Carlo simulation.  The 

shaded values in the Tables are obtained from the JMEM method, while the 

unshaded values are those of the Monte Carlo simulation. 
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MAEF=5000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.3754 0.3129 0.2491 
 0.3636 0.3422 0.2877 
    
REP=25ft & DEP=25ft 0.4527 0.3754 0.2944 
 0.4334 0.4159 0.3522 
    
REP=50ft & DEP=25ft 0.372 0.3148 0.2547 
 0.3888 0.3428 0.2928 
    
REP=50ft & DEP=50ft 0.3077 0.2599 0.2152 
 0.3261 0.2813 0.2385 

 

Table 5.5: Results of JMEM and Monte Carlo for MAEF=5000ft2 

 

 

MAEF=1000ft2 Ballistic Dispersion (mils in normal plane)  
 0 3 5 
REP=25ft & DEP=50ft 0.0797 0.0706 0.0566 
 0.0773 0.08 0.0674 
    
REP=25ft & DEP=25ft 0.0962 0.0863 0.0676 
 0.0863 0.0966 0.0845 
    
REP=50ft & DEP=25ft 0.0804 0.0713 0.0576 
 0.0797 0.0781 0.0687 
    
REP=50ft & DEP=50ft 0.066 0.0582 0.0477 
 0.0714 0.0647 0.0547 

 

Table 5.6: Results of JMEM and Monte Carlo for MAEF=1000ft2 

 

 The trends shown in Tables 5.5 and 5.6 are very similar to those 

presented for the other Monte Carlo versus JMEM comparison for stick weapons.  

But, as expected, the differences in this comparison are smaller than they were 

for the previous comparison between the JMEM method and the Monte Carlo 

simulation using the Carleton damage function.  From the results, it seems that 

since the compared methods shown in Tables 5.5 and 5.6 both use 
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approximations of the Carleton damage function to represent the stick weapons’ 

lethality, they would give similar results.  Since they results are not the same, we 

can assume that the differences in the results stem from the treatment of ballistic 

dispersion and aiming errors.  As discussed earlier, the JMEM uses the ballistic 

dispersion to enlarge the effective lethal area of each weapon in the stick.  The 

JMEM method then does a fractional coverage analysis on the weapon lethal 

areas, as well as any areas where the weapon lethal areas overlap.  The Monte 

Carlo simulations use the delivery accuracy errors to place the actual impact 

point of each weapon in the stick.  The ballistic dispersion error affects each 

weapon individually, while the aiming error moves the location of the entire stick.  

We assume that the difference between the damage results of the JMEM and 

Monte Carlo methods are due to these large differences in methodologies. 
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VI. SUMMARY OF RESULTS 
 
 

 This thesis successfully compared and contrasted different methodologies 

in determining weapon effectiveness for three different attack scenarios.  These 

scenarios were a single weapon dropped against a unitary target, a single 

weapon against an area target, and a stick of weapons against an area target.  

For each weapon/target interaction, we tested an array of ballistic dispersion and 

aiming errors.  A summary of the method comparisons is detailed below.   

 

• The first set of comparisons completed was for the case of a single 

weapon dropped against a unitary target.  The three methodologies 

compared for this weapon/ target interaction were two Monte Carlo 

simulations against the results obtained from the method utilized by the 

Joint Munitions Effectiveness Manuals (JMEM).  The first Monte Carlo 

simulation represented the single weapon as a lethal area matrix with 

probabilities of damage obtained from the Carleton damage function.  

When comparing the damage results from this Monte Carlo simulation and 

the JMEM method results, we found that a majority of the comparisons 

showed that the JMEM method gave a conservative estimate of damage.  

For cases of zero ballistic dispersion, however, we saw that the Monte 

Carlo and JMEM produced near the same result for damage against a 

unitary target.  The second Monte Carlo simulation represented the single 

weapon as a rectangular cookie cutter approximation of the Carleton 

damage function.  The result of the comparison between the rectangular 

cookie cutter Monte Carlo simulation and the JMEM is similar to that of the 

previous Monte Carlo simulation in that the JMEM damage result was 

consistently more conservative than the Monte Carlo method.  However, 

for this comparison, the damage results were not similar for cases of zero 

ballistic dispersion. 
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• The next set of comparisons completed was for the case of a single 

weapon dropped against an area target.  As in the previous case for a 

single weapon against a unitary target, the JMEM method is compared to 

two Monte Carlo simulations.  The Monte Carlo simulation that 

represented the weapon as a lethal area matrix populated with values 

from the Carleton damage function, when compared to the JMEM method, 

resulted in higher damage values for all non-zero values of ballistic 

dispersion.  The zero ballistic dispersion error cases showed that the 

Monte Carlo simulation results were generally more conservative than 

those of the JMEM.  Unlike the previous comparison for unitary targets, 

the JMEM and Monte Carlo simulation did not produce similar results.  

The same observations were made for the comparison between the 

rectangular cookie cutter Monte Carlo simulation and the JMEM method.  

The JMEM produced a more conservative damage estimate for all non-

zero ballistic dispersion cases, but a less conservative estimate for the 

zero ballistic dispersion cases. 

 

• The last set of comparisons was for the case of a stick of four weapons 

released against an area target.  There were four weapon effectiveness 

methodologies compared in this section of the thesis.  These methods 

were the old JMEM method, the new JMEM method, a Monte Carlo 

simulation using the Carleton damage function, and a Monte Carlo 

simulation using the rectangular cookie cutter damage function.  Both 

Monte Carlo simulations, when compared to the new JMEM method, 

consistently gave smaller damage estimates of the stick on the area target.  

The only times the Monte Carlo simulations gave higher damage 

estimates were for some zero ballistic dispersion cases.  When the two 

JMEM methods were compared, the older JMEM gave damage results 

that were significantly lower than those produced by the new JMEM 

method for cases on non-zero ballistic dispersion.  For cases of zero 
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ballistic dispersion we saw that the damage results from the old JMEM 

method were appreciably greater than the new JMEM results. 

 

• The number of iterations needed for the Monte Carlo simulations, as well 

as the computational time it took to run the simulations, was documented.  

The computer platform used to run all Monte Carlo simulations was the 

Matlab program running on an Intel Pentium 4 processor at 2.4 GHz.  For 

the single weapon versus unitary target scenario, both Monte Carlo 

simulations required 10,000,000 iterations, and averaged a computing 

time of 10 minutes.  The single weapon versus area target simulations 

also required 10,000,000 iterations, but averaged a computing time of 15 

minutes.  Lastly, the stick versus area target Monte Carlo simulations 

needed 100,000 iterations and averaged a computing time of 20 minutes.  

 

• The Matlab program was initially used because it was convenient at the 

time.  It is understood that other program languages, such as C or 

FORTRAN, are better suited for high speed calculations, and may have 

reduced computing time. 

 

 As summarized above, each comparison showed that the weapon 

effectiveness models for different weapon/target interactions differed in their 

damage estimates.  These differences were expected for all of the comparisons 

due to the different approximations and assumptions made with in each of the 

methods’ damage calculations. 

  

 

 

 

 

 

 



 

 90

 

 

 

 

 

 

 

 

 

 

 

 

 

 
THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 91

VII. CONCLUSIONS 
 
 

 The results of the comparisons run in this thesis have lead to the 

formulation of key conclusions.  These conclusions help to give an overview of 

the findings of the comparisons between the JMEM methods and Monte Carlo 

simulations.   

 

• The Monte Carlo simulations used to find the probability of damage for 

the single weapon against unitary and area targets needed ten million 

iterations to converge to a single answer.  For sticks, these simulations 

required one hundred thousand iterations.  These are a significant 

number of iterations, and may not be feasible to utilize in the 

operational arena due to slow computing speeds. 

 

• The damage probability of the single weapon versus unitary and area 

target cases, calculated using the Monte Carlo simulations, were 

consistently greater than the JMEM method results for cases of non-

zero ballistic dispersion.  As the ballistic dispersion increased, the 

difference between the Monte Carlo and JMEM result increased, with 

the Monte Carlo result always being larger. 

 

• For the single weapon versus a unitary target scenario with zero 

ballistic dispersion, the results from the Monte Carlo simulation 

representing the weapon as a lethal area matrix filled with values from 

the Carleton damage function matched the JMEM results within 1%.  

This was expected since the JMEM uses the Carleton damage function 

to determine the probability of damage, as does the Monte Carlo 

simulation. 
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• For the single weapon versus an area target scenario with zero ballistic 

dispersion, the results from the Monte Carlo simulation representing 

the weapon as a rectangular cookie cutter approximation of the 

Carleton damage function matched the JMEM results within 5%.  This 

closeness was expected because the JMEM method for a single 

weapon versus an area target utilizes a rectangular cookie cutter 

approach to solving for weapon damage. 

 

• The damage probability of the stick cases calculated by the Monte 

Carlo simulations was consistently smaller than the JMEM method 

results for cases of non-zero ballistic dispersion.  It is interesting to 

note that the behavior of the results is opposite that of the single 

weapon cases.  As the ballistic dispersion increased for the stick 

weapons, the resulting difference between the Monte Carlo and JMEM 

methods stayed generally constant, with the Monte Carlo result always 

being smaller than the JMEM result.   

 

• The comparisons done between the new and old JMEM methods for 

sticks show that the new JMEM is a great deal more conservative than 

the old JMEM for zero ballistic dispersion cases.  This may be the 

reason for the old JMEM being replaced. 
 

By analyzing the data obtained in this thesis we have been able to 

make conclusions about the JMEM methods and Monte Carlo simulations.  

The goal of the Monte Carlo simulations was to give a more realistic way 

of modeling the weapon/target interaction.  By running these Monte Carlo 

simulations, we have insight into the degree of the approximations used in 

the JMEM methods. 
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VIII. RECOMMENDATIONS AND FUTURE WORK 
 
 

 The goal of this thesis was to compare current weapon effectiveness 

methods with Monte Carlo simulations to determine whether the current JMEM 

methods should be replaced.  This analysis included comparing damage results 

produced from the methods, as well as computational time needed to run the 

methods.  By analyzing the data produced by the different methods, it is 

concluded that the Monte Carlo simulations better represent what actually occurs 

in the weapon target interaction than the current JMEM techniques.  This is 

probably due to the amount of approximations that the JMEM incorporates into 

its methods.  It is believed that by running the Monte Carlo simulation without 

these approximations of the Carleton damage function, we obtain damage 

estimates not tainted by approximating errors in the method.  Due to this, the 

Monte Carlo simulation should be eventually integrated by the military in weapon 

effectiveness calculations.  Though the Monte Carlo simulations are a higher 

fidelity modeling technique, it is not practical for the military to implement these 

methods as this time.  This is due to the large number of iterations needed to 

obtain a correct result from the Monte Carlo simulations.  These required 

iterations cannot be completed fast enough with current computing speeds to 

provide a quick reliable prediction of damage in the battlefield.  However, while 

computing speeds keep increasing in the future, Monte Carlo simulations will 

become a practical alternative to the current JMEM methods. 

 The data collected for the JMEM and Monte Carlo simulations in this 

thesis were limited in time.  Listed below are suggestions for follow on work in the 

topic of weapon effectiveness techniques. 

 

• As of now, the methods all require user inputs of delivery accuracy and 

weapon lethality.  It would be practical to include weapon release 

conditions from the aircraft as user inputs as well.  The user could choose 
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a weapon release mechanisms which would include weapon trajectory 

analysis to determine the delivery accuracy of the weapon or stick. 

 

• To test the trends of the data obtained through the comparisons of the 

JMEM methods and Monte Carlo simulations, a wider array of weapon 

lethalities should be tested (different user inputted MAEF values) for a 

greater number of delivery accuracy combinations. 

 

• The Matlab codes provided in Appendices A and B were not fully 

debugged and written in the most effective of manners due to time 

constraints on this thesis.  By rewriting the Monte Carlo simulation codes 

for better performance, the speed by which a damage result is calculated 

may decrease. 

 

• In order to have all methods coded in Matlab, the new JMEM method for 

sticks of weapons versus area targets should be coded along the lines of 

code given in Appendix B.  This would enable all of the stick methods 

detailed in this thesis to be accessed by one program. 

 

• The stick Matlab code provided in Appendix B should be written to enable 

the user to input the number of stick weapon elements are being dropped,  

This could also implement weapon release conditions so that the Matlab 

stick program could cover all stick configurations, rather than being hard 

coded for a four weapon stick with defined weapon impact points. 

 

• As mentioned before, Matlab was chosen as the programming language 

for the JMEM and Monte Carlo simulation methods because the program 

was convenient at the time.  It was originally thought that we could exploit 

other faculties of Matlab to simplify the coding of the Monte Carlo 

simulations.  Coding the methods discussed in this thesis in programming 
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languages like C or FORTRAN could say valuable computing time, for it is 

known that C and FORTRAN are generally more efficient coding 

languages. 
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APPENDIX A 
 
 
%INPUTS SAME AS JMEM/AS 
 
%Computes and compares the EFD based on four options.  
%1) Lethal area matrix filled using the Carleton Damage function, 
%2) Rectangular cookie cutter with Monte Carlo simulation 
%3) JMEM single weapon vs. area targets with rectangualr cookie cutter-Ch8 
%4) JMEM single weapon vs. unitary target with rectangular cookie-Ch7 
 
 
 
function [x]=efdjmem(model)      
 
%Define number of total trials in Monte Carlo Simulation 
maxiter=1000000 
 
%------------------------------------------------------------------------- 
%USER INPUTS 
REP=25;       %range error probable 
DEP=25;       %deflection error probable 
SR= 10000;    %slant range 
I=45;         %impact angle degrees 
sigma_b=0;    %Ballistic dispersion in mrads, standard deviation 
MAEF=1000; 
I_radians=I*pi/180; 
 
a=max(1-.8*cos(I_radians),.3); 
 
% Calculate the ballistic dispersion errors in ft in the ground plane 
x_br=0.6745*SR*sigma_b/(1000*sin(I_radians)); 
x_bd=0.6745*SR*sigma_b/1000; 
 
%Calculate weapon radii and blast radius 
WRr=sqrt(MAEF*a/pi);     
WRd=WRr/a; 
RBl=0; 
%----------------------------------------------------------------------- 
 
%Create Ground plane grid 
matrixsize=1001; 
dmatrix=zeros(matrixsize); 
 
%Define size of weapon matrix 
weapon_size_x=round(4*WRr)+1; 
weapon_size_y=round(4*WRd)+1; 
weaponmatrix=zeros(weapon_size_x,weapon_size_y); 
 
%Initialize target matrix 
size_t_range=50; 
size_t_deflection=50; 
t=zeros(size_t_range, size_t_deflection); 
 
%-------------------------------------------------------------------------- 
 
%Offset the center of the weapon matrix 
offset=ceil(matrixsize/2); 
 
 
%Define and place the weapon matrix in the ground plane using the Carleton damage function 
 
h=1; 
for i=0:weapon_size_x-1         %------------looping through the columns 
     for n=0:weapon_size_y-1    %------------looping through the rowa 
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        g=exp(-(((i-floor(weapon_size_x/2))*(i-floor(weapon_size_x/2))/(WRr*WRr))+(((n-floor(weapon_size_y/2))*(n-
floor(weapon_size_y/2)))/(WRd*WRd)))); 
        r=sqrt(((i-floor(weapon_size_x/2))^2)+((n-floor(weapon_size_y/2))^2)); 
         
        if (r<=RBl) 
            g=1; 
        end 
        dmatrix(i+offset-(floor(weapon_size_x/2)),n+offset-(floor(weapon_size_y/2)))=g;       
 
        %Fills in weapon  
        weaponmatrix(i+1,n+1)=g; 
         
        h=h+1; 
        n=n+1; 
    end  %end of n loop 
    i=i+1; 
end  %end of i loop 
 
 
 
 
%Define mean values and standard deviations of the range and deflection 
%for... 
 
% Aiming Error 
meanrange_aim=offset; 
meandeflection_aim=offset; 
sigmarange_aim=REP/0.6745;           
sigmadeflection_aim=DEP/0.6745; 
 
%Ballistic Dispersion 
meanrange_bd=0; 
meandeflection_bd=0; 
sigmarange_bd=x_br;           
sigmadeflection_bd=x_bd; 
 
%Initialize final sum of target cells  
tfinalaverage=0; 
 
%************************************************************************** 
%************************************************************************** 
 
%Lethal Area Matrix based on Carleton damage function 
 
if model==1 
 
%Trial loop 
for z=1:maxiter 
 
rrange_aim=(randn*sigmarange_aim); 
rdefl_aim=(randn*sigmadeflection_aim); 
 
rrange_bd=(randn*sigmarange_bd); 
rdefl_bd=(randn*sigmadeflection_bd); 
 
%Places the top left cell of the target matrix using a normal distribution 
%of random numbers (rounded in order to ensure whole numbers for the matrix cell 
 
s_range=round(rrange_aim+rrange_bd+meanrange_aim+meanrange_bd); 
s_deflect=round(rdefl_aim+rdefl_bd+meandeflection_aim+meandeflection_bd); 
 
 
k=1; %Counter for the target row currently being filled 
 
%----------------------------------------------------------------------------------------- 
 
for j=s_range:s_range+size_t_range-1   %loop to work through rows in weapon matrix 
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d=dmatrix(j-(floor(size_t_range/2)),:);       % d is defined as the current row in the weapon we are looking at  
 
 
 
for i=1:size_t_deflection                  %takes current target row and fills it with appropriate values of weapon row d 
    t(k,i)=d(s_deflect+i-1-(floor(size_t_range/2))); 
    i=i+1; 
     
    if i>size_t_range 
        break 
    end 
end  %end of i loop 
 
k=k+1; 
j=j+1; 
end  %end of j loop 
t; 
 
%Loop to sum target elements 
t_sum=0; 
for p=1:(size_t_range*size_t_deflection) 
    t_sum=t(p)+t_sum; 
    p=p+1; 
end  %end of t loop 
 
%Calculates the average cell value for a single iteration 
t_average=t_sum/(size_t_range*size_t_deflection); 
 
%Counter to keep track of all of the calculated cell values from above 
tfinalaverage=t_average+tfinalaverage; 
 
z=z+1; 
end   %end of z loop 
 
%Takes the average of all of the averages obatined from the trials 
EFD=tfinalaverage/maxiter 
 
%************************************************************************** 
%************************************************************************** 
 
%Rectangular Cookie Cutter Model 
 
elseif model==2 
     
%Find MAEF by summing elements of weapon matrix 
weapon_sum=0; 
 
for j=1:(weapon_size_x*weapon_size_y) 
    weapon_sum=weaponmatrix(j)+weapon_sum; 
    j=j+1; 
end  %end of t loop 
 
MAEF=weapon_sum 
 
%Define ratio of WRr/WRd  
a=WRr/WRd; 
 
%Define LET and WET 
LET=sqrt(MAEF*a); 
WET=LET/a; 
 
%Pd=1 in the rectangle centered in the ground plane with dimensions given 
%by WRr WRd 
dmatrix=zeros(matrixsize); 
 
for i=0:LET-1 
    for n=0:WET-1 
        dmatrix(i+offset-(floor(LET/2)),n+offset-(floor(WET/2)))=1; 
        n=n+1; 
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    end  %end of n loop 
    i=i+1; 
end  %end of i loop 
 
%Initialize final sum of target cells  
tfinalaverage=0; 
 
%Trial loop 
for z=1:maxiter 
 
rrange_aim=(randn*sigmarange_aim); 
rdefl_aim=(randn*sigmadeflection_aim); 
 
rrange_bd=(randn*sigmarange_bd); 
rdefl_bd=(randn*sigmadeflection_bd); 
 
%Places the top left cell of the target matrix using a normal distribution 
%of random numbers (rounded in order to ensure whole numbers for the matrix cell 
 
s_range=round(rrange_aim+rrange_bd+meanrange_aim+meanrange_bd); 
s_deflect=round(rdefl_aim+rdefl_bd+meandeflection_aim+meandeflection_bd); 
 
 
k=1; %Counter for the target row currently being filled 
 
%----------------------------------------------------------------------------------------- 
 
for j=s_range:s_range+size_t_range-1   %loop to work through rows in weapon matrix 
     
 
d=dmatrix(j-(floor(size_t_range/2)),:);       % d is defined as the current row in the weapon we are looking at  
 
 
 
for i=1:size_t_deflection                  %takes current target row and fills it with appropriate values of weapon row d 
    t(k,i)=d(s_deflect+i-1-(floor(size_t_range/2))); 
    i=i+1; 
     
    if i>size_t_range 
        break 
    end 
end  %end of i loop 
 
k=k+1; 
j=j+1; 
end  %end of j loop 
t; 
 
%Loop to sum target elements 
t_sum=0; 
for p=1:(size_t_range*size_t_deflection) 
    t_sum=t(p)+t_sum; 
    p=p+1; 
end  %end of t loop 
 
%Calculates the average cell value for a single iteration 
t_average=t_sum/(size_t_range*size_t_deflection); 
 
%Counter to keep track of all of the calculated cell values from above 
tfinalaverage=t_average+tfinalaverage; 
 
z=z+1; 
end   %end of z loop 
 
%Takes the average of all of the averages obatined from the trials 
EFD=tfinalaverage/maxiter 
 
 
%************************************************************************** 
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%************************************************************************** 
 
 
 
%JMEMs technique Chapter 8 - one weapon aginst area of targets - option #3 
 
elseif model==3 
 
%Define reliabilty of weapon  
R=1; 
 
% Calculate and combine BD and aiming error 
 
x_br=0.6745*SR*sigma_b/(1000*sin(I_radians)); 
x_bd=0.6745*SR*sigma_b/1000; 
 
%   RSS error probables delivery accuracies 
 
REP_dash=sqrt((REP*REP)+(x_br*x_br)); 
DEP_dash=sqrt((DEP*DEP)+(x_bd*x_bd)); 
 
 
sigma_range=REP_dash/.6745; 
sigma_deflection=DEP_dash/.6745; 
 
%Define LET and WET 
LET=sqrt(MAEF*a); 
WET=LET/a; 
 
%Define LEP and WEP 
LEP=max(LET,size_t_range); 
WEP=max(WET,size_t_deflection); 
 
%--------------------------------------- 
%Fractional coverage in range 
 
s_range=(LEP+size_t_range)/2 
t_range=(LEP-size_t_range)/2 
 
%Solving piecewise integral for range 
 
I1=((normcdf(t_range,0,sigma_range))-(normcdf(-t_range,0,sigma_range))) 
I2=((LEP+size_t_range)/(2*size_t_range))*(normcdf(-t_range,0,sigma_range)-normcdf(-s_range,0,sigma_range)) 
I3=((LEP+size_t_range)/(2*size_t_range))*(normcdf(s_range,0,sigma_range)-normcdf(t_range,0,sigma_range)) 
 
a_range=s_range/(sigma_range*sqrt(2)) 
b_range=t_range/(sigma_range*sqrt(2)) 
 
I4minusI5=((2*sigma_range)/(size_t_range*sqrt(2*pi)))*(exp(-(a_range*a_range))-exp(-(b_range*b_range))) 
 
%Fractional coverage in range 
EFRange=I1+I2+I3+I4minusI5 
 
 
%Fractional coverage in deflection 
 
s_deflection=(WEP+size_t_deflection)/2 
t_deflection=(WEP-size_t_deflection)/2 
 
%Solving piecewise integral for deflection 
 
I1=(normcdf(t_deflection,0,sigma_deflection)-normcdf(-t_deflection,0,sigma_deflection)) 
I2=((WEP+size_t_deflection)/(2*size_t_deflection))*(normcdf(-t_deflection,0,sigma_deflection)-normcdf(-
s_deflection,0,sigma_deflection)) 
I3=((WEP+size_t_deflection)/(2*size_t_deflection))*(normcdf(s_deflection,0,sigma_deflection)-
normcdf(t_deflection,0,sigma_deflection)) 
 
a_deflection=s_deflection/(sigma_deflection*sqrt(2)) 
b_deflection=t_deflection/(sigma_deflection*sqrt(2)) 
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I4minusI5=((2*sigma_deflection)/(size_t_deflection*sqrt(2*pi)))*(exp(-(a_deflection*a_deflection))-exp(-
(b_deflection*b_deflection))) 
 
%Fractional coverage in deflection 
EFDeflection=I1+I2+I3+I4minusI5 
 
%------------------------------------------------------- 
%Compute composite fractional coverage 
EFC=EFRange*EFDeflection; 
 
%Compute fractional damage 
EFD=EFC*R*LET*WET/(LEP*WEP) 
 
%************************************************************************** 
%************************************************************************** 
%Option 4 
%JMEMs technique Chapter 7 -one weapon against a unitary target 
else 
      
%RSS error probables delivery accuracies 
 
REP_dash=sqrt((REP*REP)+(x_br*x_br)); 
DEP_dash=sqrt((DEP*DEP)+(x_bd*x_bd)); 
 
LETprime=1.128*(sqrt(MAEF*a)); 
WETprime=LETprime/a; 
 
SSPD=(LETprime*WETprime)/(sqrt(((17.6*REP_dash*REP_dash)+(LETprime*LETprime))*((17.6*DEP_dash*DEP_dash)
+(WETprime*WETprime)))) 
 
 
end 
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APPENDIX B 
 
 
%Computes and compares the EFD of Stick Deliveries based on 2 options 
% 1)Lethal area matrices filled using the Carleton Damage function for each 
%   weapon in stick. 
% 2)LAM method with rectangular cookie cutter for each weapon 
% 3)WIN-JMEM fractional coverage of each weapon independently method 
% 4)Ch 9 stick calculating methods  
 
function [x]=stick(model) 
 
%Define number of total trials 
maxiter=100000 
 
%------------------------------------------------------------------------- 
%USER INPUTS 
REP=50;       %range error probable 
DEP=50;       %deflection error probable 
SR= 10000;    %slant range 
I=45;         %impact angle degrees 
sigma_b=5;    %Ballistic dispersion in mrads, standard deviation 
MAEF=1000; 
I_radians=I*pi/180; 
a=max(1-.8*cos(I_radians),.3)  %Aspect ratio of weapon radii 
 
R=1;          %Reliabilty of weapon 
 
%Calculate weapon radii and blast radius 
WRr=sqrt(MAEF*a/pi)     
WRd=WRr/a 
RBl=0; 
%------------------------------------------------------------------------- 
%Create Ground plane grid 
matrixsize=1001; 
dmatrix=zeros(matrixsize); 
 
%Define size of weapon matrix 
weapon_size_x=round(4*WRr)+1; 
weapon_size_y=round(4*WRd)+1; 
weaponmatrix=zeros(weapon_size_x,weapon_size_y); 
 
%Initialize target matrix 
size_t_range=50; 
size_t_deflection=50; 
t=zeros(size_t_range, size_t_deflection); 
%-------------------------------------------------------------------------- 
 
 
 
% Calculate the ballistic dispersion errors in ft in the ground plane  
x_br=SR*sigma_b/(1000*sin(I_radians)); 
x_bd=SR*sigma_b/1000; 
 
%Stick User Inputs 
totalweapons=4;              %total number of weapons released 
np=2;                        %Number of weapons released per pulse 
dt=.2;                       %intervalometer setting (seconds) 
Ws=100;                      %stick width 
Ls=100;                      %stick length 
PCD=1;                      %conditional probability of damage 
%----------------------------------------------------------------------- 
 
if model==1 
%Option 1 -- Carleton Damage Function methods 
 
%Define mean values and standard deviations of the range and deflection 



 

 104

%for... 
 
% Aiming Error 
meanrange_aim=0; 
meandeflection_aim=0; 
sigmarange_aim=REP/0.6745;           
sigmadeflection_aim=DEP/0.6745; 
 
%Ballistic Dispersion 
meanrange_bd=0; 
meandeflection_bd=0; 
sigmarange_bd=x_br;           
sigmadeflection_bd=x_bd; 
 
%Initialize final sum of target cells  
tfinalaverage=0; 
 
%Trial loop 
for z=1:maxiter 
 
%Places the top left cell of the target matrix using a normal distribution 
%of random numbers (rounded in order to ensure whole numbers for the matrix cell 
rrange_aim=(randn*sigmarange_aim); 
rdefl_aim=(randn*sigmadeflection_aim); 
 
 
%Top left cell of target matrix influenced by aiming error of stick 
s_range=round(rrange_aim+meanrange_aim); 
s_deflect=round(rdefl_aim+meandeflection_aim); 
 
 
%Place individual impact points including ballistic dispersion errors on 
%each weapon 
weapon1_range=-50+(randn*sigmarange_bd); 
weapon1_deflection=-50+(randn*sigmadeflection_bd); 
weapon2_range=-50+(randn*sigmarange_bd); 
weapon2_deflection=50+(randn*sigmadeflection_bd); 
weapon3_range=50+(randn*sigmarange_bd); 
weapon3_deflection=-50+(randn*sigmadeflection_bd); 
weapon4_range=50+(randn*sigmarange_bd); 
weapon4_deflection=50+(randn*sigmadeflection_bd); 
 
 
k=0; 
i=0; 
 
for k=0:size_t_range-1        % Row counter 
for i=0:size_t_deflection-1   % Column counter 
      
       Pd1=exp(-((((weapon1_range-(s_range-k))^2)/(WRr*WRr))+(((weapon1_deflection-(s_deflect+i))^2)/(WRd*WRd)))); 
       Pd2=exp(-((((weapon2_range-(s_range-k))^2)/(WRr*WRr))+(((weapon2_deflection-(s_deflect+i))^2)/(WRd*WRd)))); 
       Pd3=exp(-((((weapon3_range-(s_range-k))^2)/(WRr*WRr))+(((weapon3_deflection-(s_deflect+i))^2)/(WRd*WRd)))); 
       Pd4=exp(-((((weapon4_range-(s_range-k))^2)/(WRr*WRr))+(((weapon4_deflection-(s_deflect+i))^2)/(WRd*WRd)))); 
        
    t(k+1,i+1)=1-((1-Pd1)*(1-Pd2)*(1-Pd3)*(1-Pd4)); 
     
i=i+1; 
 
end 
k=k+1; 
i=0; 
end 
 
%Loop to sum target elements 
t_sum=0; 
for p=1:(size_t_range*size_t_deflection) 
    t_sum=t(p)+t_sum; 
    p=p+1; 
end  %end of t loop 
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%Calculates the average cell value for a single iteration 
t_average=t_sum/(size_t_range*size_t_deflection); 
 
%Counter to keep track of all of the calculated cell values from above 
tfinalaverage=t_average+tfinalaverage; 
 
z=z+1; 
end   %end of z loop 
 
%Takes the average of all of the averages obatined from the trials 
EFD=tfinalaverage/maxiter 
t; 
 
%************************************************************************** 
%************************************************************************** 
elseif model==2 
     
%Option 2 
%Rectangular cookie cutter method 
 
offset=500; 
 
%Creates matrix filled by Carleton damage function 
h=1; 
for i=0:weapon_size_x-1         %------------looping through the columns 
     for n=0:weapon_size_y-1    %------------looping through the rowa 
          
        g=exp(-(((i-floor(weapon_size_x/2))*(i-floor(weapon_size_x/2))/(WRr*WRr))+(((n-floor(weapon_size_y/2))*(n-
floor(weapon_size_y/2)))/(WRd*WRd)))); 
        r=sqrt(((i-floor(weapon_size_x/2))^2)+((n-floor(weapon_size_y/2))^2)); 
         
        if (r<=RBl) 
            g=1; 
        end 
        dmatrix(i+offset-(floor(weapon_size_x/2)),n+offset-(floor(weapon_size_y/2)))=g;       
 
        %Fills in wepaon  
        weaponmatrix(i+1,n+1)=g; 
         
        h=h+1; 
        n=n+1; 
    end  %end of n loop 
    i=i+1; 
end  %end of i loop 
 
 
 
%Find MAEF by summing elements of weapon matrix 
weapon_sum=0; 
 
for j=1:(weapon_size_x*weapon_size_y) 
    weapon_sum=weaponmatrix(j)+weapon_sum; 
    j=j+1; 
end  %end of t loop 
 
 
 
%Define LET and WET 
LET=sqrt(MAEF*a) 
WET=LET/a 
 
 
 
%Define mean values and standard deviations of the range and deflection 
%for... 
 
% Aiming Error 
meanrange_aim=0; 
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meandeflection_aim=0; 
sigmarange_aim=REP/0.6745;           
sigmadeflection_aim=DEP/0.6745; 
 
%Ballistic Dispersion 
meanrange_bd=0; 
meandeflection_bd=0; 
sigmarange_bd=x_br;           
sigmadeflection_bd=x_bd; 
 
%Initialize final sum of target cells  
tfinalaverage=0; 
 
%Trial loop 
for z=1:maxiter 
 
%Places the top left cell of the target matrix using a normal distribution 
%of random numbers (rounded in order to ensure whole numbers for the matrix cell 
rrange_aim=(randn*sigmarange_aim); 
rdefl_aim=(randn*sigmadeflection_aim); 
 
 
%Top left cell of target matrix influenced by aiming error of stick 
s_range=round(rrange_aim+meanrange_aim); 
s_deflect=round(rdefl_aim+meandeflection_aim); 
 
%Place individual impact points including ballistic dispersion errors on 
%each weapon 
weapon1_range=-50+(randn*sigmarange_bd); 
weapon1_deflection=-50+(randn*sigmadeflection_bd); 
weapon2_range=-50+(randn*sigmarange_bd); 
weapon2_deflection=50+(randn*sigmadeflection_bd); 
weapon3_range=50+(randn*sigmarange_bd); 
weapon3_deflection=-50+(randn*sigmadeflection_bd); 
weapon4_range=50+(randn*sigmarange_bd); 
weapon4_deflection=50+(randn*sigmadeflection_bd); 
 
%Pd=1 in the rectangle centered in the ground plane with dimensions given 
%by WRr WRd 
 
for r=1:size_t_range 
        for d=1:size_t_deflection 
       
            if (abs(r+weapon1_range+s_range)<=LET/2 & 
abs(d+weapon1_deflection+s_deflect)<=WET/2)|(abs(r+weapon2_range+s_range)<=LET/2 & 
abs(d+weapon2_deflection+s_deflect)<=WET/2)|(abs(r+weapon3_range+s_range)<=LET/2 & 
abs(d+weapon3_deflection+s_deflect)<=WET/2)|(abs(r+weapon4_range+s_range)<=LET/2 & 
abs(d+weapon4_deflection+s_deflect)<=WET/2) 
                t(r,d)=1; 
            else 
                t(r,d)=0; 
            end 
           
        d=d+1; 
    end 
    r=r+1; 
    d=0; 
end 
            
 
 
%Loop to sum target elements 
t_sum=0; 
for p=1:(size_t_range*size_t_deflection) 
    t_sum=t(p)+t_sum; 
    p=p+1; 
end  %end of t loop 
 
%Calculates the average cell value for a single iteration 
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t_average=t_sum/(size_t_range*size_t_deflection); 
 
%Counter to keep track of all of the calculated cell values from above 
tfinalaverage=t_average+tfinalaverage; 
 
z=z+1; 
end   %end of z loop 
 
%Takes the average of all of the averages obatined from the trials 
EFD=tfinalaverage/maxiter 
 
 
 
%************************************************************************** 
%************************************************************************** 
 
elseif model==3 
     
%Option 3 
%WIN-JEM calculation method 
 
%Ballistic Dispersion Effects 
LET=sqrt(MAEF*a) 
WET=LET/a 
 
%Define ballistic dispersion as standard deviations in the ground plane 
sigma_br=SR*(sigma_b)/(1000*sin(I_radians)) 
sigma_bd=SR*(sigma_b)/1000 
 
%Define LB and WB 
LB=sqrt(LET^2+(8*((sigma_br)^2))) 
WB=sqrt(WET^2+(8*((sigma_bd)^2))) 
 
%Define conditional probability of damage from enlarged effected area 
PCD1=PCD*LET*WET/(LB*WB) 
 
%Convert REP and DEP into sigmas 
sigma_range=(REP/.6745) 
sigma_deflection=(DEP/.6745) 
 
%Define LEP and WEP 
LEP=max(LB,size_t_range) 
WEP=max(WB,size_t_deflection) 
 
%Fractional coverage in range 
 
s_range=(LEP+size_t_range)/2 
t_range=(LEP-size_t_range)/2 
 
%Solving piecewise integral for range 
 
I1=((normcdf(t_range,50,sigma_range))-(normcdf(-t_range,50,sigma_range))) 
I2=((LEP+size_t_range)/(2*size_t_range))*(normcdf(-t_range,50,sigma_range)-normcdf(-s_range,50,sigma_range)) 
I3=((LEP+size_t_range)/(2*size_t_range))*(normcdf(s_range,50,sigma_range)-normcdf(t_range,50,sigma_range)) 
 
I4=((-sigma_range)/(size_t_range*sqrt(2*pi)))*((exp(-((-t_range-50)^2)/(2*(sigma_range^2))))-(exp(-((-s_range-
50)^2)/(2*(sigma_range^2)))))+((50/size_t_range)*(normcdf(-t_range,50,sigma_range)-normcdf(-
s_range,50,sigma_range))) 
 
I5=((-sigma_range)/(size_t_range*sqrt(2*pi)))*((exp(-((s_range-50)^2)/(2*(sigma_range^2))))-(exp(-((t_range-
50)^2)/(2*(sigma_range^2)))))+((50/size_t_range)*(normcdf(s_range,50,sigma_range)-normcdf(t_range,50,sigma_range))) 
 
%Fractional coverage in range 
EFRange=I1+I2+I3+I4-I5 
 
 
%Fractional coverage in deflection 
 
s_deflection=(WEP+size_t_deflection)/2 
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t_deflection=(WEP-size_t_deflection)/2 
 
%Solving piecewise integral for deflection 
 
I1=(normcdf(t_deflection,50,sigma_deflection)-normcdf(-t_deflection,50,sigma_deflection)) 
I2=((WEP+size_t_deflection)/(2*size_t_deflection))*(normcdf(-t_deflection,50,sigma_deflection)-normcdf(-
s_deflection,50,sigma_deflection)) 
I3=((WEP+size_t_deflection)/(2*size_t_deflection))*(normcdf(s_deflection,50,sigma_deflection)-
normcdf(t_deflection,50,sigma_deflection)) 
 
I4=((-sigma_deflection)/(size_t_deflection*sqrt(2*pi)))*((exp(-((-t_deflection-50)^2)/(2*(sigma_deflection^2))))-(exp(-((-
s_deflection-50)^2)/(2*(sigma_deflection^2)))))+((50/size_t_deflection)*(normcdf(-t_deflection,50,sigma_deflection)-
normcdf(-s_deflection,50,sigma_deflection))) 
 
I5=((-sigma_deflection)/(size_t_deflection*sqrt(2*pi)))*((exp(-((s_deflection-50)^2)/(2*(sigma_deflection^2))))-(exp(-
((t_deflection-50)^2)/(2*(sigma_deflection^2)))))+((50/size_t_deflection)*(normcdf(s_deflection,50,sigma_deflection)-
normcdf(t_deflection,50,sigma_deflection))) 
 
%Fractional coverage in deflection 
EFDeflection=I1+I2+I3+I4-I5 
 
%------------------------------------------------------- 
%Compute composite fractional coverage 
EFC=EFRange*EFDeflection 
 
%Compute fractional damage from one weapon 
singleEFD=PCD1*EFC*R 
 
%Total EFD from 4 weapons 
EFD=1-((1-singleEFD)*(1-singleEFD)*(1-singleEFD)*(1-singleEFD)) 
 
%************************************************************************** 
%************************************************************************** 
 
else 
 
%Option 4 
%Old JMEM Method 
 
%Define LET and WET 
LET=sqrt(MAEF*a); 
WET=LET/a; 
 
%Define ballistic dispersion as standard deviations in the ground plane 
sigma_br=SR*(sigma_b)/(1000*sin(I_radians)) 
sigma_bd=SR*(sigma_b)/1000 
 
%Define LB and WB 
LB=sqrt(LET^2+(8*(sigma_br)^2)) 
WB=sqrt(WET^2+(8*(sigma_bd)^2)) 
 
 
%Define conditional probability of damage from enlarged effected area 
PCD1=PCD*LET*WET/(LB*WB); 
 
% Calculate delivery accuracy errors 
 
sigma_range=REP/.6745; 
sigma_deflection=DEP/.6745; 
 
%Define Pattern Dimensions 
Lp=Ls+LB; 
Wp=Ws+WB; 
 
%Overlap  
nr=totalweapons/np          %Number of intervalometer pulses 
 
%Define Degree of overlap in the deflection direction 
nod=np*WB/Wp; 
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%Define the conditional probability of damage in the deflection direction 
if nod>=1 
    PCDd=1-(1-PCD1)^nod; 
else 
    PCDd=np*PCD1*WB/Wp; 
end 
    
%Define Degree of overlap in the range direction 
nor=nr*LB/Lp; 
 
%Calculate the conditional probability for the whole pattern 
if nor>=1 
    PCDS=1-(1-PCDd)^nor; 
else 
    PCDS=nr*PCDd*LB/Lp; 
end 
 
%--------------------------------------- 
%Define LEP and WEP 
LEP=max(Lp,size_t_range); 
WEP=max(Wp,size_t_deflection); 
 
%Fractional coverage in range 
s_range=(LEP+size_t_range)/2; 
t_range=(LEP-size_t_range)/2; 
 
%Solving piecewise integral for range 
I1=((normcdf(t_range,0,sigma_range))-(normcdf(-t_range,0,sigma_range))); 
I2=((LEP+size_t_range)/(2*size_t_range))*(normcdf(-t_range,0,sigma_range)-normcdf(-s_range,0,sigma_range)); 
I3=((LEP+size_t_range)/(2*size_t_range))*(normcdf(s_range,0,sigma_range)-normcdf(t_range,0,sigma_range)); 
 
a_range=s_range/(sigma_range*sqrt(2)); 
b_range=t_range/(sigma_range*sqrt(2)); 
 
I4minusI5=((2*sigma_range)/(size_t_range*sqrt(2*pi)))*(exp(-(a_range*a_range))-exp(-(b_range*b_range))); 
 
%Fractional coverage in range 
EFRange=I1+I2+I3+I4minusI5 
 
 
%Fractional coverage in deflection 
s_deflection=(WEP+size_t_deflection)/2; 
t_deflection=(WEP-size_t_deflection)/2; 
 
%Solving piecewise integral for deflection 
I1=(normcdf(t_deflection,0,sigma_deflection)-normcdf(-t_deflection,0,sigma_deflection)); 
I2=((WEP+size_t_deflection)/(2*size_t_deflection))*(normcdf(-t_deflection,0,sigma_deflection)-normcdf(-
s_deflection,0,sigma_deflection)); 
I3=((WEP+size_t_deflection)/(2*size_t_deflection))*(normcdf(s_deflection,0,sigma_deflection)-
normcdf(t_deflection,0,sigma_deflection)); 
 
a_deflection=s_deflection/(sigma_deflection*sqrt(2)); 
b_deflection=t_deflection/(sigma_deflection*sqrt(2)); 
 
I4minusI5=((2*sigma_deflection)/(size_t_deflection*sqrt(2*pi)))*(exp(-(a_deflection*a_deflection))-exp(-
(b_deflection*b_deflection))); 
 
%Fractional coverage in deflection 
EFDeflection=I1+I2+I3+I4minusI5 
 
%Compute composite fractional coverage 
EFC=EFRange*EFDeflection; 
 
%Compute fractional damage 
EFD=EFC*Lp*Wp*R*PCDS/(LEP*WEP) 
 
end %end of model if/else statement 
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